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1. Introduction

Much of the progress in string theory over the last decade was based on the improvement

in our understanding of nonperturbative objects such as D branes. Originally branes

appeared independently from the open string analysis [1] and from solving equations for

closed strings [2] and latter it was realized that these two approaches gave complimentary

descriptions of the same objects [3]. The idea of duality between open– and closed-string

pictures culminated in the discovery of AdS/CFT correspondence [4] which was formulated

as an equivalence between a field theory described by open strings and a theory of closed

strings on a geometry produced by branes. D branes have also been crucial for improving

our understanding of black holes [5]. Most of these developments emerged from a progress

in studying flat branes both in the open string picture and in supergravity.

Unfortunately curved branes are not understood as well as their flat counterparts.

One of the reasons for this gap is the fact that flat branes preserve 16 supercharges, while

the objects with curved worldvolume preserve at most half of this amount.1 While in the

open string picture a dynamics of curved branes with fluxes has been studied in the past (a

prototypical example of such computation was presented in [15]), gravity description of such

objects is not well-developed. Extension of open/closed duality to the case of curved branes

could potentially lead to new decoupling limits and to discovery of interesting examples of

gauge/gravity pairs with lower supersymmetry.

Another motivation for finding geometries with lower supersymmetry comes from a

desire to classify intersecting branes.2 Such intersections can be used to gain information

about physics of black holes (the classical example is D1-D5-P intersection used in state

counting of [5]) or about dynamics of gauge theories at strong coupling [18]. It turns out

that the brane intersections are closely related to curved branes with fluxes, for example

in [15] it was demonstrated that a curved D brane with electric flux on its worldvolume

mimics behavior of fundamental strings ending on a brane. As we will see below, on the

gravity side the descriptions of the intersections and curved branes are also unified.

We will mostly be interested in branes ending on other branes and the rules for such

intersections can be derived using quantization conditions for various charges [19]. If the

number of branes is small, their low-energy dynamics is well-described by the DBI action in

1Here we are discussing the situation in asymptotically-flat space, in AdS5 × S5 one can have curved

branes preserving sixteen supersymmetries and they have been studied both in the probe approximation [6 –

8] and in supergravity [9 – 14].
2See [16, 17] for a review of progress in this classification.
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flat space and in the past this action has been used to study various intersections. However,

as the number of branes increases, their effect on metric cannot be neglected, and one needs

to find the geometries produced by the branes. For the parallel stacks of flat branes this

task has been accomplished in [2], but for a generic brane intersection the relevant metrics

are not known. The goal of this paper is to derive the geometries produced by 1/4-BPS

intersections. In contrast to the traditional approach where the positions of the branes are

specified from the beginning, we will only require a certain amount of supersymmetry to

be preserved and solve the equations away from the branes. Then the brane profiles will be

derived from the consistency conditions. Thus in the closed string picture we will view D

branes as dynamical objects and this treatment is a direct counterpart of the DBI analysis

which one performs for the open strings.

We will begin by looking at a bunch of fundamental strings ending on a single stack

of D3 branes. The probe analysis for such configuration has been presented in [15], in

particular one finds that this setup is invariant under SO(3) × SO(5) transformations (we

will review this in section 2). It turns out that this isometry is sufficiently restrictive to

allow one to derive a gravity solution preserving 8 supercharges. Of course, a generic 1/4-

BPS geometry is not expected to have an SO(3) × SO(5) isometry group, but based on

the symmetric example, we managed to guess the relevant geometry for the general case

and the result is presented in section 4. It turns out that in order to satisfy consistency

conditions coming from supergravity, the brane sources cannot be introduced arbitrarily,

but rather they should follow particular profiles, and we find these shapes to be in a perfect

agreement with results coming from the open string analysis.

This paper has the following organization. In section 2 we will review the basic ideas

of [15] and extend their probe analysis to branes in nontrivial backgrounds. In particular,

we will find the restrictions on the trajectories of the probes coming from the dynamics of

DBI action. An M theory counterpart of the F1-D3 system contains membranes ending on

M5 branes and we will find classical solutions of the PST action which are relevant for this

case. Section 3 is devoted to geometric description of a stack of D3 branes with a single

spike and due to an enhanced symmetry of this setup, we are able to derive the appropriate

solution without making additional assumptions. In section 4 we propose a generalization

of this geometry to a situation without bosonic symmetries (and check that supergravity

equations are satisfied for this case as well) and, by requiring consistency of the equations

in the presence of sources, we find the locations of D branes. These positions are shown to

be in a perfect agreement with results of DBI analysis presented in section 2. In section

5 we use various duality chains to produce solutions of eleven dimensional supergravity

and again an agreement between consistent boundary conditions and PST analysis on the

probe side is found.

2. Curved branes in the probe approximation

The main goal of this paper is to construct geometries which describe fundamental strings

ending on D3 or D5 branes. If the number of branes (and strings) is small, the metric

is well-approximated by the flat space everywhere except for the locations of the branes.
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Since D branes are dynamical objects, these locations cannot be arbitrary, but rather they

should be determined by solving equations for various fields living the worldvolume of the

branes. In this section we will recall the form of such solutions corresponding to strings

ending on D branes and we will derive the expressions for the profiles of the brane probes.

In section 2.4 we will also perform a similar analysis for a membrane ending on M5 brane

in eleven dimensions.

Since we will be solving equations coming from the DBI action, the analysis of this

section pertains to a description in terms of open strings. On the other hand, the remaining

part of this paper is devoted to supergravity, which gives a picture from the point of view of

closed strings. Once these two analyses are compared, we will find a nontrivial agreement

which can be interpreted as open/closed string duality. In the decoupling limit this duality

reduces to a standard AdS/CFT.

2.1 Supersymmetric brane intersections

We begin with recalling some general facts about intersecting branes in IIB string theory.

In this theory supersymmetry transformations are parameterized by two Majorana-Weyl

spinors which have the same chirality, and it is convenient to combine them into a 32-

component real object ǫ which satisfies a chirality projection:

ǫ =

(

ǫ1

ǫ2

)

, 12 ⊗ Γ11ǫ = −ǫ : Γ11ǫ1,2 = −ǫ1,2. (2.1)

Ten-dimensional flat space preserves 32 supersymmetries corresponding to arbitrary con-

stant values of ǫ1 and ǫ2 (modulo the chiral projection). By adding a brane to R9,1 one

breaks half of the supersymmetries and the appropriate projections are [20] (see also [17]

for a review):

F1 : Γ = σ3 ⊗ Γ(2), Γǫ = ǫ,

NS5 : Γ = σ3 ⊗ Γ(6), Γǫ = ǫ, (2.2)

D(2p − 1) : Γ = iσp
3σ2 ⊗ Γ(2p), Γǫ = ǫ.

Here Γ(2p) is a product of gamma matrices with indices pointing along the worldvolume of

the brane. Each of the branes appearing in (2.2) preserves 16 real supercharges and there

are two other interesting objects which have the same amount of SUSY — a plane wave

and a KK monopole:3

P : Γ = 12 ⊗ Γ(2), Γǫ = ǫ,

KK : Γ = 12 ⊗ Γ(4), Γǫ = ǫ. (2.3)

These configurations have a pure geometric nature and they do not involve fluxes.

Once the building blocks preserving half of the supersymmetries are specified, one can

start combining them to produce configurations with lower SUSY. Such supersymmetric

3To unify the description of KK monopoles in ten and eleven dimensions, we characterize the monopole

by four nontrivial coordinates rather than by 5 + 1 (or 6 + 1) worldvolume directions.

– 4 –



J
H
E
P
0
9
(
2
0
0
7
)
0
9
3

intersections are only possible if the projectors for the ingredients commute with each

other. The main example studied in this paper involves fundamental strings ending on a

D3 brane:

1 2 3 4 5 6 7 8 9

D3 • • •
F1 •

(2.4)

Looking at spinors preserved by each object:

D3 : iσ2 ⊗ Γ0123ǫ3 = ǫ3,

F1 : 12 ⊗ Γ04ǫ1 = ǫ1,

we observe that two projectors can be diagonalized simultaneously and the entire config-

uration preserves 8 supercharges. In fact, one more object can be added to this system

without breaking additional supersymmetry:

D556789 : σ1 ⊗ Γ056789ǫ5 = ǫ5,

so it is useful to look at the following configuration:

1 2 3 4 5 6 7 8 9

D3 • • •
D5 • • • • •
F1 •

(2.5)

Performing a similar analysis, one can classify all brane intersections preserving 8 super-

charges:4

(D3123,D556789, F14), (D3123,D3145,KK2345), (D3123,D512456,NS512789),

(D512345,D71234678,NS512349), (D71234567, F18,D19)

(D512345,D516789, P1), (D3123,D71456789, P1), (D11, P1)

(D512345,D11,KK2345), (D3123,D71234567,KK4567). (2.6)

To construct the geometries corresponding to intersections appearing in the last two lines,

one needs to superpose harmonic functions and some of the resulting solutions are well-

known [21]. The geometries describing localized intersections presented in the first two

lines have not been written before, and our main goal is to find the appropriate metrics. It

turns out that once the description of (2.5) is known, the other configurations appearing

in (2.6) can be recovered by application of various dualities, so most of our discussion will

be concentrated on (2.5) and we will come back to other configurations in section 4.7.

Finally let us comment on branes in M theory. One still has geometric objects charac-

terized by projections (2.3), and in addition there are M2 and M5 branes which preserve

4We omit the configurations which can be found by an application of S duality (e.g.

(D3123 , NS556789 , D14)).
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Dp

F1

Figure 1: Two different pictures for fundamental string ending on a Dp brane: the naive configu-

ration (a) and the description in terms of spike introduced in [15] (b).

the following pieces of the 32-component real spinor ǫ [22 – 25]:

M2 : Γ = Γ(3), Γǫ = ǫ,

M5 : Γ = Γ(6), Γǫ = ǫ.

The intersections preserving 8 supersymmetries can be classified in this case as well:

(M512345,M51789(10) ,M216), (M512345,KK1234, P5), (KK1234,M212,M234),

(M512345,M512367,KK4567), (KK1234,KK5678,M29(10))

(KK1234,KK1256,KK3456), (M512345,KK6789), (M212, P1). (2.7)

and we will discuss the corresponding geometries in section 5.

However before we start constructing supergravity solutions, it is useful to perform a

brane probe analysis. We will see that some intersections are described by curved branes

with fluxes on their worldvolumes and we will find the shapes of such branes. This analysis

will be presented both in type IIB string theory (using D3-D5-F1 system as an example)

and in M theory (where we discuss M5-M5-M2 intersection).

2.2 Bions in flat space

We begin by recalling the solution found by Callan and Maldacena [15]. The basic idea

of that work can be summarized in the following way. Suppose one wants to describe a

fundamental string ending on Dp brane (as depicted in figure 1a). This configuration is

expected to preserve eight real supercharges. An observer living on the D brane sees a

pointlike charge, so an electric field should be excited on the worldvolume of the brane.

This modifies the shape of the D brane, and the correct physical picture is given by figure 1b

rather than 1a: the fundamental string is replaced by a curved brane with flux. Let us

review this construction in more detail.

The starting point for the analysis of [15] was a special embedding of Dp brane into

the ten dimensional space, so that the brane was stretched along the directions X0, . . . Xp,

– 6 –



J
H
E
P
0
9
(
2
0
0
7
)
0
9
3

while it was also allowed to have a nontrivial profile in one of the transverse coordinate

X ≡ Xp+1. To have interesting dynamics, one also allows for a non-vanishing electric field

on the worldvolume of the brane. In the static gauge (X0 = ξ0,. . . ,Xp = ξp) the DBI

action for Dp brane becomes

SDp = −Tp

∫

dp+1ξ
√

−det(G + 2πα′F )

= −Tp

∫

dp+1ξ
√

(1 − E2)(1 + (∇X)2) + (E∇X)2. (2.8)

Here electric field is defined as Ei = 2πα′Fi0. Since we are looking for a static solution,

it is convenient to choose a gauge E = ∇A, this leads to the equations of motion for two

scalars X,A:

∇i

[

(1 − (∇A)2)∇iX + (∇A∇X)∇iA
√

(1 − (∇A)2)(1 + (∇X)2) + (∇A∇X)2

]

= 0,

∇i

[

(1 + (∇X)2)∇iA + (∇A∇X)∇iX
√

(1 − (∇A)2)(1 + (∇X)2) + (∇A∇X)2

]

= 0.

In [15] it was pointed out that these equations linearize it we take A = X. Moreover, in

this case the solution saturates the BPS bound since it has a very simple energy density:

E = E
δSDp

δE
− L = Tp

(

1 + (∇X)2
)

. (2.9)

To summarize, the construction of [15] gives a family of 1/4-BPS configurations which

are parameterized by one harmonic function X:

∇2X = 0, F0i =
1

2πα′
∇iX, (2.10)

and this function gives a location of the brane. Let us discuss the symmetries of the

problem. Since the brane is curved in one of the transverse directions, the rotations around

the brane are broken to SO(8−p) and for a generic profile of X this is the only non-abelian

symmetry of the configuration.5 However for special functions X there might be additional

symmetry coming from the worldvolume of the brane. For example, figure 1a suggests an

SO(p) rotational symmetry around the string, so it is natural to consider a single spike

which is invariant under such rotations. Thus we see that the maximally symmetric spike

has an SO(8−p)×SO(p)×U(1) symmetry, in particular both D3 and D5 branes are invariant

under SO(5) × SO(3) × U(1). This symmetry will be further explored in section 3.

Let us now make a comment about emergence of fundamental strings. Due to nontrivial

value of the electric field, the action (2.8) sources a bulk Kalb-Ramond field even in the

linear order [26]. The simplest way to find the relevant coupling is to make a substitution

2πα′F → 2πα′F − P [B] in (2.8) and compute the first correction:

δSp = −
∫

dp+1ξ
δSp

δ(2πα′Fµν)
P [B]µν

5Since the system is static, it is also invariant under time translations.

– 7 –
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= Tp

∫

dp+1ξP [B]ti∇iX

= Tp

∫

dp+1ξ(Bti + (∇iX)Bt(p+1))∇iX. (2.11)

Here P [B] is a pullback of the B field to the worldvolume of the brane.

It is interesting to look at a single spherically symmetric spike which has X = Qr−(p−2),

for this configuration the coupling to the Kalb-Ramond field becomes:

δSp = TpΩp−1

∫

dX
[

rp−1Btr − Q(p − 2)Bt(p+1)

]

. (2.12)

As expected, in the region where the spike becomes thin (i.e. close to the origin in r

coordinate) this term sources strings stretching in (t,Xp+1) directions with a density which

is uniform in Xp+1 = X.

2.3 Bions in brane backgrounds

In the previous subsection we recalled the description of spikes on Dp branes assuming

that these branes are placed in the flat space. In particular we observed that a single spike

attached to a D3 brane has the same SO(5)×SO(3)×U(1) symmetry as a spike attached to

D5. This leads to a natural proposal to consider these two types of branes together. In the

probe approximation superposition of branes leads to addition of their DBI actions, so the

analysis of the previous subsection goes through. However branes with different orientations

preserve different supersymmetries, so in general a combination of branes would break

SUSY completely. Of course, in the exceptional cases some SUSY is still preserved and

as we reviewed in section 2.1, the combination of D3, D5 branes and fundamental strings

preserves eight supercharges. Moreover, by building configuration (2.5) from one stack

of D3 branes and one stack of D5s, we can also preserve SO(5) × SO(3) × U(1) bosonic

symmetry. In a more general case when we have several D3 and D5 branes at various

positions, the SO(5) × SO(3) symmetry would be broken, but eight supersymmetries will

still be preserved as long as the orientations of the branes are the same as in (2.5).

To probe this picture one can consider the following setup. Suppose one starts with

large number of D3 branes without strings attached to them. These branes would lead

to the modification on the geometry, and the resulting metric is well-known [2]. Then to

describe an additional D3 brane with string ending on it, one needs to solve the equations of

motion coming from the DBI action on curved background. It would be interesting to find

a profile of the spike in this case. One can also look at the D5 brane on D3 background and

solve equations in this case as well. The D branes in the geometry produced by multiple

D5’s can be analyzed in the same way. While these exercises are very straightforward,

it seems useful to outline them here since we will need to compare the results with the

outcome of computations in supergravity.

D3 spike in the geometry of D3. This case has been previously analyzed in [27], so

we will be very brief. The background geometry is given by the metric of N coincident D3

– 8 –
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branes6:

ds2 = H−1/2ds2
3,1 + H1/2(dz2 + dy2

5),

F5 = d
[

H−1d4x
]

−∗
6 dH, H = 1 +

Q

(z2 + y2)2
, Q = 4πgNα′. (2.13)

One can study dynamics of a probe D3 brane assuming that its worldvolume is described

by a profile r = 0, z = X(x1, x2, x3). In the static gauge (ξ0 = x0, . . . , ξ3 = x3) the induced

metric and the pullback of the RR potentials are

Gab = H−1/2ηab + H1/2∂aX∂bX, Cabcd = H−1ǫabcd (2.14)

and the action governing the dynamics of the probe brane becomes:7

SD3 = −T3

∫

d4ξ
√

−det(G + 2πα′F ) +
T3

4!

∫

Cabcddξabcd (2.15)

= −T3

∫

d4ξH−1
√

(1 − HE2)(1 + H(∇X)2) + H2(E∇X)2 + T3

∫

d4ξH−1.

One can see that equations of motion for A and X are satisfied if the relations (2.10) are

imposed.8 We conclude that even in the background produced by other D3s, the spike of

D3 brane should still follow the harmonic profile in ξ1, . . . , ξ3.

D5 spike in the geometry of D3. Next we put a D5 brane in the background written

above.9 Using the static gauge ξ0 = x0, . . . , ξ5 = y5 and writing z = Y (y1, . . . , y5), we find

the induced metric GAB and the DBI action:

G00 = −H−1/2, Gab = H1/2 [δab + ∂aX∂bX] , Ea = ∇aA,

SDBI
D5 = −T5

∫

d6ξH
√

(1 − E2)(1 + (∇X)2) + (E∇X)2. (2.16)

While in the absence of the electric field there is no direct coupling between D5 brane

and four-form potential, in the present case we do have a nontrivial contribution to the

Chern-Simons term:

SCS
D5 = T5

∫

D5
2πα′F ∧ P [C̃4] = −T5

∫

dξ0

∫

vol
dA ∧ P [C̃4]. (2.17)

Here C̃4 is defined by the relation

dC̃4 =∗
6 dH = − 4Q

(z2 + y2)3
∗
6 [zdz + ydy] .

6In this section we use the string conventions which has a different normalization of F5 compared

to standard supergravity notation. We discuss this difference in more detail in appendix A (see

also [30]).,HorowStrom
7Here we again defined Ei = 2πα′Fi0 = ∇iA.
8Notice that the Chern-Simons term in the action is crucial for enforcing a condition ∂L

∂X
= 0.

9Such brane is relevant for the description of baryons in AdS/CFT [28] and its DBI dynamics has been

discussed in [29]. Unfortunately, the coordinate system used in [29] is not very convenient for comparison

with gravity solutions, so we need an alternative derivation presented below.
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In particular if we choose a convenient gauge where

C̃4 = 4Qya
ǫabcde

4!
dybcde

∫ z

0

dw

(w2 + y2)3
,

then the pullback is especially simple. Plugging this expression in (2.17), we can simplify

the Chern-Simons coupling:

SCS
D5 = −T5

∫

dξ0

∫

vol
d

[

AC̃4

]

+ 4QT5

∫

d6ξA∂a

[∫ X yadw

(w2 + y2)3

]

.

Using the relation

4∂a

[∫ X yadw

(w2 + y2)3

]

= −∂a∂a

∫ X dw

(w2 + y2)2
+ ∂a

∂aX

(z2 + y2)2

and dropping total derivatives from the Chern-Simons action,10 we arrive at the final

expression:

SCS
D5 = −T5

∫

d6ξ∇2A

∫ X

0
dw(H − 1)|z=w − T5

∫

d6ξ(H − 1)|z=X∂aA∂aX. (2.18)

To summarize, the action for the D5 brane is given by a sum of (2.16) and (2.18).

Writing equations of motion for X and A and setting A = X in the result, we find

−∂XH + ∇(H∇X) − (H − 1)∇2X − ∂XH(∇X)2 + ∇((H − 1)∇X) = 0,

−∇(H∇X) −∇2

∫ X

0
dw(H − 1)w + ∇((H − 1)∇X) = 0.

To simplify the second equation, we rewrite the term containing the integral in a more

transparent form11

∇2

∫ X

0
dw(H − 1)w = ∇((H − 1)∇X) + ∇X∇̃(H − 1) +

∫ X

0
dw∇̃2(H − 1)|z=w

= (H − 1)∇2X + 2∇(H − 1)∇X − ((∇X)2 + 1)∂XH.

Using this expression, one concludes that equations for X and A collapse to the same

relation:

− (1 + (∇X)2)∂XH + H∇2X + 2∇H∇X = 0. (2.19)

Even though this relation looks more complicated than the Laplace equation (2.10), in

section 4.2 we will see that (2.19) has a very simple interpretation once it is rewritten in

different coordinates.

10We are looking for configurations where gauge potential A decays sufficiently fast as we go to infinity

on the D5 brane, so the boundary terms do not contribute.
11Here we defined ∇̃iH as a derivative taken at fixed value of z. Its relation to a total derivative is given

by ∇̃iH = ∇iH − ∂XH∇iX. We also used the fact that H is harmonic.
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D3 spike in the geometry of D5. Let us now consider probes in the geometry produced

by N coincident D5 branes:12

ds2
S = H−1/2(−dt2 + dy2

5) + H1/2(dz2 + dx2
3), (2.20)

e2Φ = H−1, F3 =∗
10 (dH−1 ∧ dt ∧ d5y) =∗

3 dH, H = 1 +
Q

(z2 + x2)
.

We begin with putting a D3 brane on this background. As one goes to infinity, the effect

of D5 branes become negligible, and in this region we expect the D3 brane to stretch along

t and x1, x2, x3. This suggests a natural static gauge which can be imposed everywhere:

ξ0 = t, ξi = xi. The action describing D3 brane contains the DBI piece, and, in the presence

of the electric field, there is also a Chern-Simons coupling with two-form potential. We

analyze these two terms separately starting with DBI contribution:

SDBI
D3 = −T3

∫

d4ξe−Φ
√

−det(G + 2πα′F )

= −T3

∫

d4ξH
√

(1 − E2)(1 + (∇X)2) + (E∇X)2. (2.21)

The evaluation of the Chern-Simons term follows the same steps as the derivation of (2.18),

so we will be brief here. If one chooses a convenient gauge for C2:

C2 = 2Qxa
ǫabc

2
dxbc

∫ z

0

dw

(w2 + x2)2
, (2.22)

then up to total derivatives, the Chern-Simons action becomes:

SCS
D3 = T3

∫

D
32πα′ ∧ P [C2]

= 2QT3

∫

d4ξA∂a

[∫ X

0

xadw

(w2 + x2)2

]

= −T3

∫

d4ξ

{

∇2A

∫ X

0
dw(H − 1) + (H − 1)∂aA∂aX

}

. (2.23)

We observe that the action for D3 brane superficially looks the same as the sum of (2.16)

and (2.18), although the harmonic functions and the number of independent variables

appearing in these two cases are different. In spite of this differences, one can see that the

same manipulations that led to the (2.19) can be repeated here, and we conclude that for

configurations with A = X there is only one independent equation of motion:

− (1 + (∇X)2)∂XH + H∇2X + 2∇H∇X = 0. (2.24)

D5 branes in D5 background. Finally we analyze the D5 brane in the geometry (2.20).

To do this it is convenient to describe the Ramond-Ramond field in terms of the dual six-

form potential:

C6 = H−1dt ∧ d5y. (2.25)

12In this paper most of the metrics are written in the Einstein frame. However since the DBI action is

usually written in terms of the string metric, we use this frame in (2.20).
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Then the action for D5 brane becomes:

SD5 = −T5

∫

d5ξH−1
√

(1 − HE2)(1 + H(∇X)2) + H2(E∇X)2 + T5

∫

d4ξH−1. (2.26)

Equations of motion are satisfied by E = ∇X as long as X is a harmonic function.

2.4 Spikes in M theory

In the last two subsections we discussed various configurations of branes with fluxes in type

IIB string theory. A similar analysis can be performed in M theory as well and we will

outline it here.

M theory has two fundamental objects: M2 and M5 branes. In string theory we looked

at fundamental strings ending on D brane, and the closest analog of this configuration in

eleven dimensions is a set of membranes ending on M5 brane. To preserve supersymmetry,

the branes should intersect on a line, and the third object can be added without breaking

additional supersymmetry:

1 2 3 4 5 6 7 8 9 10

M5 • • • • •
M2 • •
M5′ • • • • •

(2.27)

Notice that one can arrive at configuration (2.27) by starting from (2.5), T dualizing along

x5 and lifting to eleven dimensions.

To analyze the dynamics of various branes in (2.27), it is convenient to start with

a metric produced by a stack of N five-branes which have the same orientation as M5

in (2.27). Then we can probe this geometry by either M5 or M5’ with M2 branes attached

to them. The M5-M2 configuration in flat space will be recovered if we set N = 0.

M5 spike in the M5 geometry. We begin with quoting geometry produced by a stack

of M5 branes [23]:

ds11 = H−1/3(−dt2 + dx2
4 + dw2) + H2/3(dz2 + dy2

4),

F4 = ∗d
[

H−1dt ∧ d4x ∧ dw
]

, H = 1 +
Q

(z2 + y2)3/2
. (2.28)

To study dynamics of an additional M5 brane with flux we need an analog of the DBI

action, where instead of the one-form gauge field one has a two-form potential on the

worldvolume. Since the three-form field strength has to be self-dual, finding of such action

is a nontrivial task and there have been various proposals in the literature [24, 25]. We

will use a formalism based on introduction of one auxiliary field a [25]:

SPST = −
∫

d6ξ

[
√

−det(gmn + iF̃mn) +

√−g

4(∇a)2
∂maF ∗mnlFnlp∂

pa

]

. (2.29)

The dynamical variable is a two-form Bmn and following [25] we introduced

F = 2dB, F ∗mnl =
1

6
√−g

ǫmnlabcFabc, F̃mn =
1

√

(∇a)2
F ∗

mnl∂
la. (2.30)
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As usual, we can fix the invariance under diffeomorphisms by choosing the static gauge

ξ0 = t, ξ1 = x1, . . . ξ4 = x4, ξ5 = w, but (2.29) has an additional gauge invariance and to fix

it one can make a to be any convenient function of the worldvolume coordinates (see [25]

for further discussion). In the present case the natural choice is a = w. From (2.27) it

is clear that in the absence of M5’ branes we expect to have a translational invariance in

x5 ≡ w and in time, moreover since the worldvolume of M2 always contains these two

directions, it is natural to parameterize F in terms of a one-form ω as F ∗ = ω ∧ dt ∧ dw.

For this set of fields the relations (2.30) become

ω ∧ dt ∧ dw = 2 ∗ dB, F̃ = H1/6ω ∧ dt. (2.31)

Here the Hodge dual is computed using the six dimensional metric induced on the M5

brane:

gmn = H−1/3ηmn + H2/3∂mX∂nX ≡ H−1/3g̃mn. (2.32)

In our gauge the last term in (2.29) drops out and the action can be rewritten in terms of

the vector ω:

SPST = −
∫

d6ξH−1
√

(1 + Hω2)(1 + H(∇X)2) − H2(ωm∇mX)2. (2.33)

The remaining part of the action comes from the direct coupling of C6 with M5 brane and

it has a very simple form:

SCS =

∫

d6ξH−1. (2.34)

It is now convenient to perform a dualization similar to the one discussed in [31]. To do so

we introduce two Lagrange multipliers: one to enforce the relation between ω and B and

another one to make the action quadratic in ω:

S = SCS − 1

2

∫

d6ξH−1(V + PV −1) +

∫

d6ξΛm(ωm − 2(∗6dB)mtw), (2.35)

P ≡ −det(g̃ab + 2iH1/2ω[aδ
t
b]) = −(1 + Hg̃mnωmωn) detg̃ab. (2.36)

Notice that P is the expression which appears under the square root in (2.33), but to

simplify the discussion below we wrote it in terms of the metric g̃ab defined by (2.32).

Taking variation with respect to ωm and B, we find two equations:

Λm = −V −1detg̃ g̃mnωn, (2.37)

d

(

Λ√
−detg̃

)

= 0 : Λ =
√

−detg̃ dA. (2.38)

These relations allow one to eliminate ωm from the action (2.35):

S = SCS − 1

2

∫

d6ξ

[

V (H−1 +
1

detg̃
Λ2) − detg̃ (HV )−1

]

. (2.39)
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Integrating out the auxiliary field V and substituting the expressions for g̃mn and Λm, we

arrive at the final action:

S = SCS −
∫

d6ξ
√

−detg̃ H−1(H−1 − g̃mn∂mA∂nA) (2.40)

=

∫

d6ξH−1 −
∫

d6ξH−1
√

(1 + H(∇X)2)(1 − H(∇A)2) + H2(∇A∇X)2.

This action has been encountered before (see equation (2.15)) and we showed that any

harmonic function X leads to a solution if one also sets A = X. Previously this action

arose from the analysis of D3 or D5 branes, and in the present context (2.40) can be viewed

as a DBI action for D4 branes: we started with a set of M5 and effectively did a dimensional

reduction along w.

M5’ spike in M5 geometry. We again use the metric (2.28), however in this case it is

more convenient to use a magnetic three-form potential instead of an electric six-form:

dC̃3 = − 3Q

(z2 + y2)5/2
∗
5[zdz + ydy] : C̃3 = 3Qya

ǫabcd

3!
dybcd

∫ z

0

dζ

(ζ2 + y2)5/2
. (2.41)

According to [25] the magnetic potential couples to M5’ brane both through PST action

and through Chern-Simons term. The former coupling is accomplished by a replacement

Fabc → Fabc − C
(3)
abc in (2.29), (2.30), and the latter is given by

SCS =
1

2

∫

F ∧ C(3). (2.42)

In the present context we can impose a static gauge with worldvolume coordinates (t, w,y),

then the profile of M5’ would be described by13 z = X(y) and the induced metric becomes

g00 = −H−1/3, gww = H−1/3, gmn = H2/3 [ηmn + ∂mX∂nX] ≡ H2/3g̃mn. (2.43)

Taking into account the orientation of M2 brane given in (2.27), it is reasonable to choose

a gauge a = w and to assume that the only non-vanishing component of F ∗ is F ∗
twm ≡ ωm.

In particular we observe that for for this class of configurations, the second term in the

PST action (2.29) does not contribute. The differential equation for ωm is given by

ωm =
[

∗
6(2dB − C(3))

]

tzm
(2.44)

and as before we will enforce this relation via Lagrange multiplier. Introducing another

multiplier to eliminate the square root as in (2.35), we find the PST action:

SPST = −1

2

∫

d6ξH(V + PV −1) +

∫

d6ξΛm(ωm − [∗6(2dB − C(3))]mtw), (2.45)

P ≡ −det(g̃ab + 2iH−1/6(H1/6ω)[aδ
t
b]) = −(1 + g̃mnωmωn) detg̃ab.

13We did not look at a more general profile z = X(y, w) since configuration (2.27) has a translational

invariance in w.
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With our choice of gauge, F ∧ C(3) = 0, so the Chern-Simons term (2.42) does not con-

tribute. We can integrate out B and ω using their equations of motion:14

d

(

H−5/3Λ√−g̃

)

= 0 : Λm = H5/3
√

−g̃ ∂mA,

ωm =
H−1V

(−g̃)
g̃mnΛn =

1√−g̃
∂mA,

and rewrite (2.45) as an action for A:

SPST = −1

2

∫

d6ξH

[

V

(

1 − (∂A)2

(−g̃)

)

− g̃V −1

]

+

∫

d6ξΛm(∗6C
(3))mtz

= −
∫

d6ξH
√

−g̃(1 − g̃mn∂mA∂nA) −
∫

d6ξA∂a

∫ X

0
dζ∂aH(y, ζ). (2.46)

To arrive at the last term we used the following transformations:

Λm(∗6C
(3))mtz = (H

√

−g̃g̃mn∂nA)
H−1ǫ̃ abc

mtz

3!
C

(3)
abc = 3Qym∂mA

∫ X

0

dζ

(ζ2 + y2)5/2
.

We observe that the action (2.46) looks similar to the sum of (2.16) and (2.18), the dif-

ference is hidden in the harmonic function H. To derive equations of motion coming

from (2.16), (2.18) we only used a harmonicity of H, so repeating the similar steps here

and setting A = X we arrive at the equation

− (1 + (∇X)2)∂XH + H∇2X + 2∇H∇X = 0. (2.47)

2.5 Summary

Let us summarize the results of this section. We looked at geometries produced by stacks

of various branes and studied dynamics of various probe objects on such backgrounds. If

the probe branes have the same type as the objects which created geometry, then their

profiles in transverse coordinates are governed by a harmonic equation:

∇2X = 0. (2.48)

Notice that the probe branes become parallel to the original stack only at infinity: in the

interior of the space the probes are curved (see figure 2) and they have a nonvanishing

electric field. This field is responsible for breaking eight out of 16 supersymmetries which

would be preserved by the parallel branes. We considered three examples of such setup:

D3-D3, D5-D5 systems in type IIB theory and M5-M5 configuration on M theory. In the

first two cases the worldvolume flux sources fundamental strings, while in eleven dimensions

it mimics M2 branes.

We also looked at other configurations preserving eight supercharges in ten dimensions:

they were constructed by putting D3 branes on a D5 geometry or by putting D5 branes on

14To arrive at the equation for Λ one should notice that ǫtw
mabcΛm(dB)abc = H−5/3ǫ̃mabcΛm(dB)abc.

– 15 –



J
H
E
P
0
9
(
2
0
0
7
)
0
9
3

Figure 2: A probe Dp brane with electric flux in the presence of N parallel Dp branes.

a D3 geometry. In both cases the brane profiles X(x) were governed by the same nonlinear

equation

− (1 + (∇X)2)∂XH + H∇2X + 2∇H∇X = 0, (2.49)

where H(x,X) was a harmonic function describing the background. The same equation

was found to describe a profile of M5’ brane on the M5 geometry (see (2.27)) and for future

reference we summarize the harmonic functions for the three situations:

HD3 = 1 +
Q3

(X2 + x2
5)

2
, HD5 = 1 +

Q5

X2 + x2
3

, HM5 = 1 +
QM5

(X2 + x2
4)

3/2
. (2.50)

Here a subscript of x denotes the number of components of this vector. It might be

somewhat counterintuitive that positions of supersymmetric probes are described by a

nonlinear equation like (2.49): looking at configuration (2.5), one would expect that the

branes can be freely superposed. In section 2.4 we will show that this expectation is correct

and equation (2.49) can be linearized by a change of variables.

Notice that not only equation (2.49) is nonlinear, it also has a term which does not

have derivatives of X, so constant X 6= 0 is not a solution. Thus if one starts from a

geometry produced by D3 branes and adds a probe D5 passing through some point (X,x),

then to be supersymmetric, this probe must have nontrivial electric field Ei = ∇iX on the

worldvolume and fundamental strings must be sourced. Of course, as one goes to infinity

in x directions, (2.49) reduces to a usual Laplace equation and flat D5 branes are allowed

for any value of X. However, as we just argued, unless such brane is placed at X = 0,

it will become curved in the interior and it will have fundamental string attached to it.

This situation should be contrasted to the case of supersymmetric D3 probes which can be

placed anywhere and still remain flat.

While the discussion of the last paragraph pertains to a geometry created by a stack

of D3 branes, the same argument can be made for metrics produced by D5 and M5 branes

since the probe objects are still described by the equation (2.49).
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Once we established that the branes with fluxes are supersymmetric and they can be

superposed, it is natural to look at configurations which contain many such branes on top

of each other. As usual, when the brane charge becomes large, such stacks are expected

to modify the geometry and the remaining part of this paper is devoted to finding the

appropriate gravity solutions.

3. Single spike in IIB supergravity

In the previous section we reviewed the construction of branes with fluxes in the probe

approximation and our next task is to find the geometries which are generated by such

branes. We will start with analysis on the type IIB side and first we assume a large

bosonic symmetry which is present in the case of a single spike. Then we will be able to

derive the form of the supergravity solution and express it in terms of two functions which

obey three differential equations. In the next section we will generalize the solution to the

case of multiple spikes and discuss the boundary conditions.

3.1 Summary of the solution.

Let us consider a stack of D3 branes and a stack of fundamental strings with orientations

described in (2.5). This diagram suggest that the configuration has a rotational symmetry

between (x1, x2, x3) and between (x5, . . . , x9). From the point of view of brane probes

described in subsection 2.2, the SO(5) symmetry is automatic, while the SO(3) symmetry

implies that in (2.10) we choose a function X which depends only on the radial coordinate

along D3 brane. Once the number of branes becomes large, the geometry is modified, but

one expects the SO(5) × SO(3) symmetry to remain unbroken. Moreover, the solution

corresponding to BPS branes is expected to be static, so we arrive at the following ansatz

for the metric:

ds2 = −e2Adt2 + e2BdΩ2
2 + e2CdΩ2

4 + hijdxidxj . (3.1)

Here and below the indices i, j are running over the three remaining coordinates and all

scalars are taken to be functions of xi. To describe a configuration of fundamental strings

ending on D3 brane, we need to have a nontrivial F5 and an electric component of the

NS-NS flux:

H3 = 2ω2 ∧ dt, F5 = df3 ∧ dΩ4 + dual, eφ. (3.2)

Here ω2 is a closed two-form in three-dimensional space spanned by xi. The equation of

motion15 for F3:

d ∗ (eφF3) = 4F5 ∧ H3 (3.3)

implies that we should excite at least one component of this three form: F3 = df2∧dΩ2. One

can see that the dilaton will be generated as well. While there are other fields consistent

15Our conventions for the supergravity fields are summarized in the appendix A.
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with SO(5) × SO(3) × U(1) symmetry, the set which we just described gives a consistent

truncation of type IIB supergravity: to see this one should look at a Z2 symmetry which acts

by reversing the signs of all RR fields and changes the orientations of S2 and S4 as well.16

It is clear that the only fields that are invariant under this Z2 and SO(5) × SO(3) × U(1)

symmetries are

H3 = 2ω2 ∧ dt, F3 = df2 ∧ dΩ2, F5 = df3 ∧ dΩ4 + dual, eφ. (3.4)

One can write the equations for the Killing spinors for the geometry (3.1), (3.4). These

equations are solved in the appendix B and here we just quote the result:

ds2 = eH
[

−e3φ/2dt2+e−φ/2(dv2+v2dΩ2
2)

]

+e−H−φ/2(du2+u2dΩ2
4)+e3H+3φ/2(dw+A)2

A = Audu =
∂uF

∂wF
, e2H = ∂wF, F5 = −1

4
d(u4Au) ∧ dΩ4 + dual

H3 = d
[

e2H+2φ(dw + A)
]

dt, F3 = d(v2∂vF ) ∧ dΩ2. (3.5)

The solution is parameterized by two functions F , eφ and they obey differential equations:

∂we−2φ + v−2∂v(v
2∂vF ) = 0, (3.6)

u4e−2H∂we−2H−2φ − (∂u − Au∂w)(u4Au) = 0. (3.7)

The last relation can also be rewritten in terms of the coordinates (u, v, F ):

u4∂F e−2H−2φ + ∂u(u4∂uw)|v,F = 0. (3.8)

It turns out that the equations for the Killing spinors are not sufficient to determine

F and dilaton completely. The simplest way to see this is to observe that the system (3.5)

should be applicable for the description of fundamental strings in the absence of D3 branes.

Requiring F5 and F3 to vanish, we find that F can depend only on w, then equations (3.6)

and (3.7) reduce to two simple statements: H has to be a constant and the dilaton is an

arbitrary function of (u, v). Of course we do not expect the dilaton to be arbitrary for the

fundamental string, this shows that (3.6) and (3.7) do not give a complete set of equations.

In the case of fundamental string, the missing relation comes from the equation of motion

for H3, so one may suspect that this equation should be added for a general solution as

well.

The only nontrivial component of the equation for the Kalb-Ramond two-form is eval-

uated in the appendix B.5:

v2∂u

[

u4∂ue−2φ
]

+ ∂v

[

v2u4∂ve
−2φ−2H

]

+ u4v4∆u(e2H∂vw∂vw)|v,F = 0 (3.9)

and it turns out that (3.6), (3.7), (3.9) form a complete set of equations. We postpone the

proof of this fact until subsection 4.5, here we just notice that for a fundamental string

relation (3.9) leads to a standard harmonic equation for the dilaton:

u−4∂u

[

u4∂ue−2φ
]

+ e−2Hv−2∂v

[

v2∂ve
−2φ

]

= 0. (3.10)

16This symmetry was also used to restrict the ansatz in [12].
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To summarize, we have shown that for the ansatz (3.1), (3.4), the equations for the

Killing spinors can be solved to yield the result (3.5) which is parameterized by two func-

tions F, eφ satisfying (3.6) and (3.7). We also argued that in general these two equations

should be supplemented by (3.9) to give a complete local description of the geometry. To

specify the unique solution, one should also impose boundary conditions at infinity and at

the points where one of the spheres contracts to zero size. To avoid repetition, we will not

discuss these boundary conditions here, but perform the analysis for more general solutions

in subsection 4.2.

3.2 Comparison with geometries dual to Wilson lines.

In the previous subsection we analyzed the geometries with SO(5)×SO(3)×U(1) symmetry.

The motivation came from studying D3 branes and fundamental strings in flat space, so the

most interesting solutions are asymptotically flat. In section 2.1 we saw that a combination

of D3 and F1 in flat space can preserve at most eight real supercharges, and it was precisely

such 1/4-BPS configuration that was analyzed in section 2.2 and in the previous subsection.

It turns out that the situation is different if space asymptotes to AdS5×S5. In this case one

can find D3 branes with fluxes which preserve 16 supercharges [7, 8] and the set of fluxes in

the corresponding supergravity solutions is similar to (3.4) [11, 12]. The solutions described

in [12] preserve twice as many supersymmetries as (3.5), and they also have a bigger set

of bosonic symmetries: SO(5) × SO(3) × U(1) is enhanced to SO(5) × SO(3) × SO(2, 1).

In this subsection we discuss the relation between these two classes of geometries. We will

only present the results and the details of computations can be found in the appendix D.

To embed the solutions of [12] with SO(5) × SO(3) × SO(2, 1) symmetry into a more

general class of geometries described by (3.5), we need to recall the metric found in [12]:

ds2 = yeS−φ/2dH2
2 + yeG−φ/2dΩ2

2 + ye−G−φ/2dΩ2
4 +

e−φ

2y cosh G
(dx2 + dy2). (3.11)

The warp factors entering this expression are specified in terms of one harmonic function,

but since these relations are fairly complicated we refer to [12] for details.

Starting from the geometry (3.11) one can look for a change of coordinates which puts

the metric in the form (3.5). It is natural to identify the spheres in these two descriptions,

so one only needs to find the map for the remaining four coordinates. To extract time, we

write the metric on AdS2 as17

dH2
2 = −z2dt2 +

dz2

z2
. (3.12)

Then matching the coefficients in front of dt2, dΩ2
2, dΩ2

4 in (3.11) and (3.5), we arrive at

the relations

eH = yz2eS−2φ, u2 = yeH−G = y2z2eS−G−2φ, v2 = yeG−H = z−2e−S+G+2φ. (3.13)

17One should use Poincare patch rather than global coordinates, since in derivation of (3.5) the spinor

was assumed to be t-independent.
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This leaves only one undetermined coordinate w and in appendix D we derive the expression

for its differential (D.8):

dw + Audu = e−2H
[

y1/2e(S−4φ)/2+φ/4Fdz + ze−2φdx
]

, (3.14)

F =
√

ye−φ/2(eS − eG − e−G).

Equations (3.13), (3.14) allow one to recover a unique set of coordinates (u, v,w) starting

from any solution with SO(5) × SO(3) × SO(2, 1) symmetry.

To give an example of a more explicit map from (x, y, z) to (u, v,w) coordinates, we

look at AdS5 × S5. In this case it is convenient to parameterize x, y in terms of the radial

coordinate ρ on AdS and an angle θ on the sphere (see [12] for details):

x = cosh ρ cos θ, y = sinh ρ sin θ. (3.15)

In terms of these variables one finds

eS = y−1 cosh2 ρ, eG = y−1 sinh2 ρ, F = cos θ. (3.16)

Substituting this into (3.13), we find the expressions for u, v and eH :

u = z sin θ cosh ρ, v = z−1 tanh ρ, eH = z2 cosh2 ρ. (3.17)

Since we are discussing a solution with eφ = 1, the relation (3.14) can be simplified:

dF − ∂vFdv = d(zx). (3.18)

This equation can be easily solved (F = zx + F̃ (v)), then recalling the definition

e−2H = ∂F w,

we find the expression for the differential of w:

dw = e−2HdF |u,v = e−2Hd(zx) = −d

(

2θ − sin 2θ

4(z cosh ρ sin θ)3

)

. (3.19)

Similarly, starting from any other solution of [12], one can use (3.13) and (3.14) to find w

as a function of (x, y, z).

To summarize, we showed that the solutions (3.11) can be embedded into the co-

ordinate system defined by (3.5). Of course, the geometries (3.11) represent only a small

subclass of the metric discussed in this section, in particular they preserve 16 supercharges,

rather than eight which were used to construct (3.5).

3.3 Relation to non-commutative theories.

Solution (3.5) describes a geometry produced by D3 (or D5) branes with worldvolume

fluxes and similar systems have been studied in connection with non-commutative field

theories. To introduce non-commutativity on the field theory side, one turns on a constant

Kalb-Ramond field on the brane [32], and on the bulk side the relevant geometries have
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been constructed in [33, 34]. In this subsection we will recover these solutions by taking a

certain limit of (3.5).

We begin with recalling that for a flat D3 brane without fluxes one has a simple

expression for e−2H :

e−2H = 1 +
Q

(u2 + F 2)2
. (3.20)

The worldvolume of the brane is parameterized by (t, v, S2) and to zoom in on some point

on D3 one should introduce a rescaling

t = ǫt̃, v = v0 + ǫṽ, dΩ2
2 = ǫ2dx2

2 (3.21)

and send ǫ to zero. In a more complicated case of branes with fluxes, the worldvolume

is still parameterized by (t, v, S2), but now the position of the brane in F -direction can

depend on v. However even in that situation the rescaling (3.21) can be used to zoom in on

a particular point on D3, and in the limit ǫ → 0 the brane becomes flat. To recover regular

solution from (3.5), redefinition (3.21) should be supplemented by additional rescalings:

eH = ǫ−2eH̃ , u = ǫ−1ũ, F = ǫ−1F̃ , w = ǫ3w̃. (3.22)

Notice that the dilaton has a trivial ǫ dependence, in particular this implies that ∂ṽe
φ = 0.

Since we started with regular gtt, the zooming procedure eliminates ṽ-dependence from this

component of the metric, then we conclude that ∂ṽe
H̃ |ũ,F̃ = 0 in the limit ǫ → 0. Similarly,

a regularity of F3 implies that

0 = ∂ṽF3|ũ,F̃ = ∂ṽ

[

d(∂ṽF̃ |ũ,w̃) ∧ d2x
]

ũ,F̃
: ∂ṽF̃ |ũ,w̃ = h(ũ, F̃ ). (3.23)

Let us rewrite the equations (3.6) and (3.8) in the ǫ → 0 limit:

∂w̃e−2φ + ∂2
ṽ F̃ |ũ,w̃ = 0, (3.24)

ũ4∂F̃ e−2H̃−2φ + ∂ũ(ũ4∂ũw̃)|ṽ,F̃ = 0. (3.25)

Using the relation

∂ṽ |ũ,w̃ = ∂ṽ|ũ,F̃ + ∂ṽF̃ |ũ,w̃ ∂F̃ |ũ,ṽ = ∂ṽ|ũ,F̃ + h∂F̃ |ũ,ṽ (3.26)

and definition of eH̃ , one can simplify equation (3.24):

e2H̃∂F̃ e−2φ + h∂F̃ h = 0. (3.27)

To relate e2H̃ and F̃ , we differentiate (3.23) with respect to w̃ and compare the result with

an expression for ∂ṽe
2H̃ |ũ,w̃:

∂w̃(∂ṽF̃ ) = e2H̃∂F̃ h, ∂ṽ(∂w̃F̃ ) = h∂F̃ e2H̃ .

Integrability condition for these two equations requires a particular combination of h and

eH̃ to be F̃ -independent:

he−2H̃ = h1(ũ). (3.28)
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Finally we can solve (3.27) and substitute the result into an F̃ -derivative of (3.25):

e−2φ = −h2
1(ũ)e2H̃ + h2(ũ), h = e2H̃h1(ũ), (3.29)

∂2
F̃
(h2e

−2H̃) + ∆ũe−2H̃ = 0. (3.30)

The functions h1 and h2 are not arbitrary and to find the restrictions imposed on them,

we begin with rewriting (3.23) in terms of h1:

∂ṽF̃ − h1(ũ)∂w̃F̃ = 0 : F̃ = F̃ (w̃ + h1ṽ, ũ), w̃ = −h1ṽ + ŵ(F̃ , ũ). (3.31)

Combining the last relation with (3.25), we conclude that ∆uh1 = 0. Then equation for

the flux (3.9) reduces to a simple relation ∆uh2 = 0, so we arrive at the complete solutions

for h1, h2 in terms of four constants g1, g
′
1, g2, g

′
2:

h1 = g1 +
g′1
ũ3

, h2 = g2 +
g′2
ũ3

. (3.32)

To avoid singularity at ũ = 0, one must set g′1 = g′2 = 0.

We can now rewrite the complete solution (3.5) in terms of two constants g1 and g2

and a function e−2H̃ which satisfied a Laplace equation (3.30):

ds2 = e−φ/2

[

eH̃+2φ

{

−dt̃2+e−2φv2
0dx

2
2+g2

(

dṽ− g1

g2
dF̃

)2
}

+e−H̃

(

dũ2+ũ2dΩ2
4+

dF̃ 2

g2

)]

e−2φ = −g2
1e

2H̃ + g2, H3 = d

[

e2φ(dF̃ − g2

g1
dṽ)

]

∧ dt, F3 = v2
0g1 de2H̃ ∧ d2x,

F5 =
1

4

[

u4

∫

∂ue−2H̃dF

]

+ dual, ∂2
F̃
(g2e

−2H̃) + ∆ũe−2H̃ = 0. (3.33)

This is precisely the geometry produced by flat D3 branes with fluxes, which was con-

structed in [34]. The standard D3 brane corresponds to g1 = 0.

To obtain the solution (3.33), we looked at a vicinity of some point on D3 brane.

Similar analysis can be performed for D5 brane as well, in this case one should introduce

a rescaling

t = ǫt̃, u = u0 + ǫũ, dΩ2
4 = ǫ2dy2

4, eH = ǫ4eH̃ , eφ = ǫ−4eφ̃,

(

v

w

)

= ǫ−3

(

ṽ

w̃

)

(3.34)

and send ǫ to zero. Assuming that we started with a regular metric, we conclude that after

taking the limit, the dilaton, eH̃ and C4 = −1
4u4

0Au d4y should not depend on ũ, this leads

to the relation

F̃ = cũ + F̂ (ṽ, w̃) : Au = ce−2H̃ . (3.35)

Rewriting the differential equations (3.6), (3.7) in terms of rescaled variables, we find two

relations

∂w̃e−2φ̃ + ∆ṽF̂ = 0, (3.36)

e−2H̃∂w̃e−2H̃−2φ̃ + c2e−2H̃∂w̃e−2H̃ = 0. (3.37)
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The second equation can be solved in terms of a function h(ṽ), then the first relation leads

to the Laplace equation for e2H̃ :

e−2φ̃ = −c2 + h(ṽ)e2H̃ ,

h∂2
w̃e2H̃ + ∆ṽe

2H̃ = 0. (3.38)

As before, we find that (3.9) reduces to a harmonic equation for h(ṽ) and requiring regu-

larity, we conclude that h must be a constant. This leads to the final solution describing

D5 branes in the presence of the Kalb-Ramond field:

ds2 = e−φ̃/2

[

eH̃+2φ̃

{

− dt̃2+h

(

dũ +
c

h
dw̃

)2}

+e−H̃u2
0dy

2
4+eH̃

(

dṽ2+ṽ2dΩ2
2+

dw̃2

h

)]

e−2φ̃ = −c2 + he2H̃ ,

F5 = −cu4
0

4
de−2H̃ ∧ d4y + dual, (3.39)

H3 = c de2φ̃ ∧
(

dũ +
c

h
dw̃

)

∧ dt,

F3 = v2d(−∂we−2φ̃dv + ∂ve
2H̃dw) ∧ dΩ2,

h∂2
w̃e2H̃ + ∆ṽe

2H̃ = 0. (3.40)

This solutions has been constructed in [34] using T duality and shift.

4. General solution in ten dimensions

In the previous section we derived a geometry produced by a single spike which is attached

to either D3 or D5 brane. From the brane probe analysis of section 2 we know that

such spikes can be linearly superposed and in this section we will present supergravity

solutions which describes such superpositions. Previously we had a large symmetry group

(SO(3) × SO(5) × U(1)) which allowed us to derive the solution. Unfortunately for a

general superposition of D3, D5 branes and fundamental strings we do not expect to have

any nonabelian symmetry, so it seems that one would need to find the most general static

1/4-BPS solution of type IIB supergravity. Rather than facing this complicated problem,

we will guess the solution using geometries constructed in the previous section as a guide.

In this section we will propose a very natural generalization of the solution (3.5) which has

all the required properties and then we will check that the geometry indeed preserves 8

supercharges. Then we will analyze various properties of the new solution, in particular we

will show that the new geometries have the right number of degrees of freedom to account

for all D3-D5-F1 intersections. We will also see that the regularity of the supergravity

solution requires that one can place the brane sources only on specific curves. It turns

out that this restriction coming from closed strings gives exactly the same profiles of the

branes as we derived in section 2 using the open string language.
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4.1 Summary of the solution

We begin with writing a guess for the solution which generalizes (3.5) and does not rely

on having nonabelian symmetries:

ds2 = eH
[

−e3φ/2dt2 + e−φ/2dx2
3

]

+ e−H−φ/2dy2
5 + e−H+3φ/2(∂wFdw + ∂yFdy)2

e2H = ∂wF, F5 = − 1

4 · 4!d
[

e−2Hǫijklm∂ymFdyijkl
]

+ dual,

H3 = d
[

e2φ(∂wFdw + ∂yFdy)
]

dt, F3 =
1

2
d(ǫijk∂

kFdxij). (4.1)

Starting with this ansatz, one can solve equations for Killing spinors and show that if F and

eφ obey certain differential equations, then the geometry preserves eight supercharges,18

and the Killing spinor ǫ can be expressed in terms of a constant eight-component object

ǫ0:

ǫ = exp

[

1

4

(

H +
3φ

2

)]

ǫ0 : ΓwΓ45678ǫ0 = −iǫ0, ΓwΓ123ǫ
∗
0 = iǫ0, Γ11ǫ0 = −ǫ0.(4.2)

As before, the solutions are parameterized by two functions F , eφ which obey differential

equations:19

∂we−2φ + ∆xF |y,w = 0, (4.3)

∂F e−2H−2φ + (∆yw)|x,F = 0. (4.4)

While it seems unusual to write two equations using different variables ((x, y,w) in the

first equation and (x, y, F ) in the second one), this ”mixed notation” makes the relations

compact and more importantly, it is more natural for finding the positions of the branes.

Of course one can always go to a more consistent notation which uses (x, y,w) everywhere,

this can be accomplished via translation rules:

∂x|w,y = ∂x|F,y −
∂xw

∂F w
∂F |x,y, ∂y|w,x = ∂y|F,x − ∂yw

∂F w
∂F |x,y, ∂F = e−2H∂w. (4.5)

As before, one also needs an equation of motion for the Kalb-Ramond field:

∆ye−2φ|F + ∆xe−2φ−2H |F + ∆y(e2H∂xiw∂xiw)|x,F = 0. (4.6)

4.2 Boundary conditions

So far we presented the results of local analysis which led to the conclusion that the geome-

try was parameterized in terms of two functions eφ, F satisfying equations (4.3), (4.4), (4.6).

These equations were derived assuming absence of sources and if this assumption holds

18We perform this check in the appendix C while still assuming SO(5) symmetry, and an extension to

the most general case is trivial. We also notice that to arrive at (4.1) it is sufficient to postulate the form

of the metric and F5, while only requiring H3 to be electric and F3 to be magnetic.
19Here we introduced the Laplace operators in flat spaces: ∆x =

P3
1 ∂2

xi
, ∆y =

P5
1 ∂2

yi
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everywhere, then R1,9 is the only asymptotically-flat solution.20 To describe nontrivial

geometries we will need to introduce the branes into the system. It turns out that a consis-

tency of supergravity equations leads to strong restrictions on the positions of the branes

and we will derive these restrictions below.

The conventional way of accounting for branes in supergravity is an introduction of

sources into the equations of motion for various NS-NS or RR fields. Unfortunately this

approach is not convenient in the present context since we were solving not the equations

of motion, but rather the conditions for supersymmetry. Luckily there is an alternative

way of looking at D branes: if the metric is known, then the location of the branes can be

found by looking at the points where metric becomes degenerate. For example, a metric

produced by a stack of flat Dp branes:

ds2
S = H−1/2ds1,p + H1/2dx2

10−p (4.7)

becomes singular at the locations of the branes (i.e. at the poles of the harmonic function

H), in particular the warp factor multiplying the worldvolume goes to zero. If positions of

the branes are characterized in this fashion, then one can still use the sourceless equations,

but impose certain boundary conditions on the warp factors. In the Einstein frame the

situation becomes slightly more complicated and depending on the value of p, the warp

factor could either go to zero or to infinity. Due to this non-universality and since we are

only interested in the case of D3 and D5 branes, it is convenient to consider these two types

of sources separately.

Geometric description of D3 branes. Near D3 brane sources it is convenient to use

coordinates (x, y, F ), then the metric becomes

ds2 = eH
[

−e3φ/2dt2 + e−φ/2dx2
3

]

+ e−H−φ/2dy2
5 + e−H+3φ/2(dF − ∂xFdx)2.

The worldvolume of the brane can be parameterized by t and xi, then the brane position

can be specified as yi = y
(0)
i (x), F = f(x). In the case of a single spike (or multiple spikes

preserving SO(5) symmetry) the equation yi = y
(0)
i (x) should be replaced by u = u0(x)

and to describe a three-brane rather than a 7+1 dimensional object we must set u0(x) = 0.

A natural generalization of this statement to the spikes without the symmetry is to require

the D3 branes to be located at constant values of y
(0)
i , so the profile should be given by

yi = y
(0)
i , F = f(x). (4.8)

Since one expects the gradient of eH to point in the directions orthogonal to D3 brane, we

conclude that in the leading order both eH and w are constant along the brane worldvolume,

implying that at this order

w = w̃(y, F̃ ), F̃ ≡ F − f(x). (4.9)

20This statement is familiar in a case of D3 branes where the system (4.3)–(4.6) reduces to a Laplace

equation (∂2
F +∆y)e−2H = 0 and the sourceless solution is unique due to the maximum principle. In general

one has a more complicated elliptic system, but the sourceless solution is still expected to be unique.

– 25 –



J
H
E
P
0
9
(
2
0
0
7
)
0
9
3

We expect that near D3 brane the dilaton remains finite and eH goes to zero. In

particular this implies that e2H∂F e−2φ goes to zero as we approach the brane, then rewriting

the equation (4.3) in terms of (x, y, F ) and taking the near-brane limit, we find

(

∂x − ∂xw

∂F w
∂F

)

∂xw

∂F w
= 0. (4.10)

Substituting the leading term in the expression for w (4.9), we find a simple harmonic

equation for f(x):

∂x∂xf = 0. (4.11)

Then the leading terms in (4.4) give a harmonic equation for w̃ (notice that the dilaton is

constant in this approximation):

e−2φ0∂2
F̃
w̃ + ∆yw̃ = 0. (4.12)

Of course this equation is only satisfied away from the brane and the correct relation has

sources at F̃ = 0, yi = y
(0)
i . Since the source is located at a point in six dimensional

space,21 it is completely characterized by one number Q:

e−2φ0∂2
F̃
w̃ + ∆yw̃ = −Qθ(F̃ )δ(y − y(0)). (4.13)

This coefficient should be interpreted as a number of branes in the stack.

To summarize, we started with very natural assumption about positions of D3 branes

(namely we assumed that the branes are located at fixed values of yi) and showed that

consistency of supergravity equations requires the profiles to be

y = y(0), F = f(x), ∆xf = 0. (4.14)

As already mentioned, for the solutions with SO(5) symmetry no assumption is needed

and we suspect that the condition yi = y
(0)
i can be extracted from the equations of motion

even in the general case, but we will not discuss this further. Once the profile f(x) is

specified, the harmonic equation (4.13) allows one to recover function w in the vicinity of

D3 brane. Thus it appears that if we only have D3 sources, then the boundary conditions

are completely specified by the harmonic functions fa(x) and coordinates y
(0)
a giving the

positions of the branes, and the set of charges Qa characterizing the stacks.

Geometric description of D5 branes. If one looks for the geometries without singular-

ities, D3 branes are the only allowed sources. Indeed, the necessary condition for avoiding

the singularities is the requirement for the dilaton to remain finite. This condition can

only be satisfied by D3 branes: for the other two objects (D5 and fundamental strings) eφ

goes to zero as we approach the branes, so the metric must be singular. However these

singularities of supergravity are resolved by string theory since D5 branes and fundamental

strings are allowed sources.

21Notice that it is the source for e−2H = ∂F w that should be localized in both y and F̃ , this is the origin

of the theta function in (4.13).
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As one approaches D5 brane the dilaton eφ goes to zero, however combination gtte
−φ/2

remains finite in the limit. For the solution (4.1) it means that eΨ = eH+φ should remain

finite as one approaches the brane. Let us rewrite the metric in terms of this function and

coordinates (x, y,w):

ds2 = e−H/2(−e3Ψ/2dt2 + e−Ψ/2dy2
5) + e3H/2−Ψ/2dx2

3 + e−5H/2+3Ψ/2(∂wFdw + ∂yFdy)2.

Notice that in the vicinity of the brane e−H goes to zero.

As in the case of D3 branes, we assume that the worldvolume of D5 is parameterized

by (t,y) and the profile is given by

x = x(0), w = h(y), ∆yh = 0. (4.15)

Then near the brane the function F depends upon w and y only through their combination

w̃:

F = F̃ (x, w̃), w̃ ≡ w − h(y). (4.16)

Then eliminating eφ from (4.3), (4.4) and neglecting the term e−2H∂we−2Ψ in the leading

order of (4.4), we arrive at the relations which hold in the vicinity of D5 branes:

∆xF̃ + e−Ψ0∂2
wF̃ = 0,

(

∂y − (∂yF )

∂wF
∂w

)(

∂yF

∂wF

)

= 0.

The second equation is equivalent to harmonicity of h(y), and the first equation allows one

to recover F once the D5 charges are known. We see a direct analogy with description of D3

branes which was discussed above: to be consistent with SUGRA equations, the sources

should be specified in terms of the harmonic profiles ha(y), positions in the transverse

directions x
(0)
a and charges Qa.

Geometric description of strings. Although our goal is to describe strings dissolved in

D3 or D5 branes, for completeness we also mention a possibility of having a ”freestanding”

string in the geometry. As one approaches such object, eφ goes to zero, but eH remains

finite. This implies that F (w,x,y) is finite as well, then equations (4.3), (4.4) are equivalent

to the statement that the divergent part of e−2φ is w-independent. The leading contribution

to (4.6) implies harmonicity of the dilaton in the transverse directions:

e−2H∆xe−2φ + ∆ye−2φ = 0, (4.17)

which is not very surprising. As usual, to describe the strings we have to add some sources

to the last equation. We see that for fundamental strings there is no issue of finding the

”profile”: since there are eight transverse coordinates, the string can only do along w

direction.
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Figure 3: Boundary conditions are imposed along the harmonic profiles corresponding to D3

branes (a) or D5 branes (b). One can also have freestanding strings which do not end on branes

(c).

Summary of the boundary conditions. By adding sources to the gravity equations

and analyzing consistency conditions, we found that the branes cannot be introduced ar-

bitrarily, but rather they should follow specific profiles. In particular, D3 branes can only

be stretched along the surfaces (4.14) with harmonic function f(x), while D5 branes must

follow (4.15).22 We also found that near free-standing fundamental string, the equation for

divergent part of the dilaton becomes linear (4.17) and the sources can easily be added to

it:

e−2H∆xe−2φ + ∆ye−2φ = −
∑

Qa
1δ(x − xa)δ(y − ya). (4.18)

The pictorial representation of boundary conditions is given in figure 3.

In section 4.5 we will show that starting from any set of allowed boundary conditions,

one can construct a unique geometry produced by corresponding brane configuration. But

first it might be useful to compare the results of this subsection with probe analysis pre-

sented in section 2.

4.3 Relation to the brane probes

In the previous subsection we derived two sets of boundary conditions which are consistent

with supergravity: the geometry can end either on D3 or on D5 branes. Moreover, the

profiles of such branes cannot be arbitrary, but rather they are parameterized in terms of

harmonic functions. Let us now compare these boundary conditions which brane profiles

which were derived in section 2.

Probes in flat space. As a warm-up we will recover the profiles discussed in subsec-

tion 2.2. The flat space can be easily embedded in the solution (4.1) by setting

F = w, e2φ = 1. (4.19)

22Of course the branes also extend along time direction.
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Clearly this solves all equations. Few D3 branes added to flat space can be described in two

alternative ways: one can either use an open string picture (as we did in the subsection 2.2),

or one can look at the changes in the geometry produced by branes. If the number of

branes is small, we expect the metric to be flat everywhere except the small vicinity of the

branes, and the consistency of SUGRA in this vicinity leads to the restriction on the brane

profile (4.11):

F = f(x), ∆xf = 0. (4.20)

This consequence of closed string analysis is in complete agreement with open string re-

sult (2.10). The agreement for D5 branes works in the same way.

D3 brane in D3 geometry. Next we start with a stack of N D3 branes without world-

volume fluxes and introduce k additional branes. We will assume that N is large and

replace the stack of branes by the geometry that they produce, while for the k branes

we compare the DBI and SUGRA descriptions. The DBI analysis of section 2.3 led to

conclusion that in the geometry

ds2 = H
−1/2
3 ds2

3,1 + H
1/2
3 (dz2 + dy2

5) (4.21)

the profile of the probe brane is z = X(x) with a harmonic function X. To recover the

metric of flat D3 branes from (4.1) one has to take a dilaton to be a constant and assume

that ∂xF = 0:

ds2 = eHds2
3,1 + e−H(dF 2 + dy2

5). (4.22)

Then the SUGRA profile (4.14) with harmonic function f(x) gives a perfect agreement

with DBI analysis.

D5 brane in D3 geometry. In this case the DBI equation (2.19) looked somewhat

complicated:

− (1 + (∇X)2)∂zH3 + H3∇2X + 2∇H3∇X = 0 (4.23)

and now we understand the reason: while the coordinates (x, y, F ) are natural for describing

D3 branes, the boundary conditions for D5 branes look simpler in (x, y,w) variables, so we

need to perform a translation.

From the analysis of the previous subsection we know that supergravity requires the

profile of D5 brane to be w = h(y) with harmonic function h. To compare with (4.23) we

recall the relation:

∂F w = e−2H : w =

∫ F

e−2HdF =

∫ F

H3(z,y)dz. (4.24)

Then writing the profile of D5 in F coordinate as F = X(y), we arrive at the relation:

h(y) =

∫ X(y)

H3(z,y)dz. (4.25)
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It turns out that this relation (which is a consequence of SUGRA analysis) is equivalent

to the equation (4.23). To see this we apply the Laplace operator ∆y to both sides of the

last equation:

0 = H3∆yX + ∂yX∂yH3(X,y) + ∂yX∂yH3(z,y)|z=X +

∫ X(y)

∆yH3dz

= H3∆yX + 2∂yX∂yH3(X,y) − (∂yX)2∂zH3(z,y)|z=X − ∂zH3|z=X . (4.26)

Here we used the harmonicity of H3 ((∂2
z + ∆y)H3(z,y) = 0) and we assumed that the

low limit of integration in (4.25) is chosen to be along the hypersurface where ∂zH3 = 0.23

The last equation is exactly the same as (4.23), so we demonstrated a perfect agreement

between the results of open string analysis and SUGRA computations in the geometry

produced by D3 branes.

Branes in D5 geometry. Can be analyzed in the same way and one would find that both

the DBI analysis and SUGRA computations require that the brane profiles are described

by harmonic functions. However these functions should be written in appropriate variables

and in particular, to recover a harmonic function governing the profile of D3 brane one

needs to rewrite (2.24) in terms of coordinates (x, y, F ). This involves essentially the same

computations that were used to show that the profile (4.23) is equivalent to w = h(y) with

harmonic h.

To summarize, we compared two descriptions of D branes with fluxes: one is given by

open strings and the other one involves closed strings. At low energies the physics of open

strings is well described by the DBI action and we analyzed the 1/4 BPS solutions of such

theory on the backgrounds produced by D3 or D5 branes. In the closed string picture, the

consistency of supergravity led to restrictions on the brane profiles, and by looking at this

restrictions on D3 or D5 background, we found a perfect agreement with DBI analysis.

This provides a nontrivial check of the DBI/SUGRA duality in the 1/4 BPS sector. If one

further takes a decoupling limit, this duality reduces to a more conventional gauge/gravity

correspondence. Let us discuss the decoupling limits which are relevant in the present case.

4.4 Near-horizon limits

In this paper we have been studying the brane configurations preserving eight supersym-

metries. Our main goal was to describe branes embedded in flat space, so at infinity the

geometry approaches R9,1 and the number of supersymmetries is enhanced to 32. It might

also be interesting to look for geometries which asymptote to different solutions with en-

hanced symmetry (such as AdS5×S5). In particular, it is natural to ask whether solutions

with AdS5×S5 asymptotics can be recovered from asymptotically-flat geometries, just like

the AdS5 × S5 itself is recovered from the metric produced by D3 branes.

To address this question we introduce a generalization of the near horizon limit which

would work for any asymptotically-flat solution (4.1). The decoupling limit of the geometry

23Notice that the same choice was made in section 2.3 to derive (4.23).
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produced by D3 brane is obtained by zooming in on the vicinity of the brane [4]:

e−2H = 1 +
Q

(y2 + F 2)2
→ Q

(y2 + F 2)2
,

in particular one goes to small values of |y|. Notice that in this limit both the equation for

the harmonic function and the expression for the metric in terms of this function remain the

same. Let us start from a general solution (4.1) and make a rescaling y → ǫỹ, then to keep

the form of the solution (4.1) unchanged, additional redefinitions should be implemented:

x = ǫ−1x̃, y = ǫỹ, eH = ǫ2eH̃ , w = ǫ−3w̃, t = ǫ−1t̃, F = ǫF̃ . (4.27)

With these changes the metric written in terms of variables with tildes looks exactly the

same as the original one. Moreover one can see that equations (4.3)–(4.6) are invariant

under such rescaling.

Starting from the metric of D3 branes and introducing a change of variables (4.27),

one extracts the decoupling limit as ǫ goes to zero. This can be seen by looking at the

harmonic function for that case:

e−H = 1 +
Q

(y2 + F 2)2
: e−H̃ = ǫ2 +

Q

(ỹ2 + F̃ 2)2
→ Q

(ỹ2 + F̃ 2)2
. (4.28)

In this limit the U(1) symmetry is enhanced to SO(2, 1):

ds2
5 = r2(−dt2 + dv2 + v2dΩ2

2) +
dr2

r2
= cosh2 ρ

[

−z2dt2 +
dz2

z2

]

+ dρ2 + sinh2 ρdΩ2
2

and the map between the coordinates is given by

r = z cosh ρ, v = z−1 tanh ρ.

For a general asymptotically flat solution (4.1), the rescaling (4.27) accompanied by

the limit ǫ → 0 gives a new geometry with different asymptotics, but it seems impossible to

have an interesting solution with enhanced symmetry in this case (we discuss this in more

detail in the appendix D). Thus the solutions produced by the near-horizon limit (4.27)

asymptote to AdS5 × S5, but they preserve only 8 supercharges. An analogous situation

has been encountered for the metrics describing a Coulomb branch [35]: they preserved

16 supercharges in asymptotically-flat space and symmetry was not enhanced in the near-

horizon region.

An alternative near-horizon limit can be defined by zooming in on a vicinity of D5

branes. By starting with asymptotically flat solution and introducing a rescaling

t =
t̃

ǫ
, x = ǫ3x̃, y = ǫ−1ỹ, eH = ǫ−4eH̃ , eφ = ǫ4eφ̃, w = ǫ3w̃, F = ǫ−5F̃ ,

one ends up with a new solution of (4.1)–(4.4), and for ǫ = 0 the resulting geometry has a

linear dilaton in the asymptotic region.
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4.5 Existence of the solution: perturbative proof

Let us summarize what we learned so far. Imposing the ansatz (4.1) and looking at super-

symmetry variations we showed that locally the geometry preserves eight supercharges if

functions F , eφ satisfy (4.3), (4.4), (4.6). We also know that to construct nontrivial asymp-

totically flat solutions, one needs to add certain sources to these three equations, and in

subsection 4.2 we showed that a consistency of supergravity requires the brane sources

to follow harmonic curves. Suppose one chooses such curves and assigns certain D3/D5

charges to them. Would this lead to a unique asymptotically flat solution? For the flat

D3 branes it is easy to show that the answer is yes: since one deals with Laplace equation,

the sources fix the solution uniquely. Moreover such solution can be easily constructed. In

a more general case we cannot solve the nonlinear equations, but one can show that any

allowed distribution of sources leads to a unique solution. We will outline the argument in

this subsection.

Our starting point is flat space which has constant dilaton (to simplify the formulas

below we will set eφ0 = 1, although this relation can be easily relaxed) and w = F . To

formulate a perturbation theory around flat space, we introduce a small parameter ǫ and

write

w = F +
∑

k=1

ǫkwk, e−2φ = 1 +
∑

k=1

ǫkΦk. (4.29)

Next we substitute these expansions into (4.3), (4.4), (4.6) and look at those equations

order by order in ǫ. For the first terms we find:

∂F Φ1 − ∆xw1 = 0,

∂2
F w1 + ∂F Φ1 + ∆yw1 = 0,

(∆y + ∆x)Φ1 + ∆x∂F w1 = 0. (4.30)

One can combine the first two equations to write an equation for w1:

∂2
F w1 + ∆xw1 + ∆yw1 = 0 (4.31)

and solve it, then Φ1 can be determined by looking at the system:

∂F Φ1 = ∆xw1, (∆y + ∆x)Φ1 + ∆x∂F w1 = 0. (4.32)

Notice that integrability condition is satisfied due to (4.31).

The requirement of asymptotic flatness translates into the boundary conditions for w1

and Φ1: they should vanish as one goes to infinity. Thus in the absence of sources, the

maximum principle can be used to argue that w1 = Φ1 = 0, this demonstrates that unless

the branes are put in, the flat space is the only solution of our equations. To add D3 and

D5 branes we introduce of sources to (4.31):

∂2
F w1+∆xw1+∆yw1 = −

∑

a

Qa
3δ(y−ya)θ(F −pa(x))+

∑

a

Qa
5δ(x−xa)θ(F − p̃a(y)). (4.33)
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Notice that these sources are non-local in F direction (they appear with θ instead of δ-

function), however the branes do lead to pointlike sources for e−2H = ∂F w. This justifies

interpretation of Qa
3 and Qa

5 as brane charges.

At the linear order there are no restrictions on the profiles pa, p̃a, but keeping in mind

the consistency of the nonlinear equations, we choose these functions to be harmonic. This

will allow us to assume that the sources are introduced only at the linearized level, and

the higher orders of perturbation theory are included just to correct this seed solution (see

below).

Now we look at the equations (4.32). The first of these equations is a first order ODE

for Φ1, so it is very unnatural to introduce sources there. Introduction of sources in the

second equation is possible, but they must be F -independent for consistency:

(∆y + ∆x)Φ1 + ∆x∂F w1 = −
∑

Qa
1δ(x − xFa)δ(y − yFa). (4.34)

Such sources correspond to ”freestanding” fundamental strings located at (xFa,yFa), and,

as already mentioned, such objects are covered by our ansatz. Using the properties of the

Laplace equation, we conclude that for any distribution of D3, D5 and F1 sources, one

finds a unique solution (w1,Φ1) in the first order of perturbation theory.

Suppose k− 1 orders in perturbation theory have been constructed. Let us look at the

terms in (4.3), (4.4), (4.6) which multiply ǫk:

∂F Φk − ∆xwk = Ψ
(1)
k ,

∂2
F wk + ∂F Φk + ∆ywk = Ψ

(2)
k ,

(∆y + ∆x)Φk + ∆x∂F wk = Ψ
(3)
k . (4.35)

The expressions in the right hand sides contain backreaction of the previous orders, but

we do not add extra sources for k ≥ 2. Then we arrive at a Poisson equation for wk:

∂2
F wk + ∆xwk + ∆ywk = Ψ

(2)
k − Ψ

(1)
k (4.36)

and it has a unique solution once we require wk to vanish at infinity (this is necessary for

the asymptotic flatness). The remaining two equations become

∂F Φk = ∆xwk + Ψ
(1)
k , (∆y + ∆x)Φk = −∆x∂F w1 + Ψ

(3)
k . (4.37)

The integrability condition is satisfied since the three original equations (4.3), (4.4), (4.6)

were compatible, so one finds a unique solution Φk.

We see that starting from some set of D3, D5 and F1 sources and requiring the solution

to be asymptotically flat, one can construct unique perturbative expansions (4.29) for the

dilaton and w. Since the first term in the series (w1,Φ1) is regular everywhere away from the

sources, we expect all Ψ
(a)
k to be regular away form sources as well, and the same would be

true for (wk,Φk). Thus at any point away from the brane the perturbative expansions (4.29)

are well-defined. We also know that these series converge in the asymptotic region, and it

is natural to assume the convergence everywhere away from the sources. We do not give a

rigorous proof of this fact, but rather appeal to the analogy with multipole expansion. Thus
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one ends up with a geometry which solves ”vacuum” equations of type IIB supergravity

everywhere away from the location of the sources. Fortunately the vicinity of the branes

was already analyzed before, so we know that staring from harmonic pa(x) and p̃a(y), one

constructs a solution which is sourced by allowed D3 and D5 branes.

One can ask what would happen if the functions pa and p̃a were not chosen to be

harmonic. The perturbation theory can be constructed in this case as well, and the sources

would still be at F = p(x) or F = p̃(y) and SUGRA solution would be valid away from

the branes. However such ”branes” are not a part of string theory: as we showed in

subsection 4.2 supergravity leads to standard D3 and D5 only for harmonic profiles. We

conclude that for any other profile SUGRA is sourced by some other ”strange matter” and

since we do not want to couple string theory to external degrees of freedom, such solutions

should be declared unphysical.

To summarize, in this subsection we showed that starting from an allowed configu-

ration of sources, one can recover the complete solution (4.1) using perturbation theory,

and while this may not be useful in practice, the procedure demonstrates an existence

and uniqueness of a solution for any allowed distribution of branes. Of course, we have

developed a perturbation theory around flat space and to demonstrate an existence of the

solution with different asymptotics one should repeat the analysis for that case. For the

geometries which asymptote to AdS5 ×S5 or a linear dilaton, one might also use the limits

discussed in the previous subsection.

4.6 Example: smeared intersection

While the general solution (4.1) has a relatively simple form, the two functions (F, e−2φ)

parameterizing it satisfy a system of nonlinear equations (4.3)–(4.6), so the metric (4.1) is

not very explicit. It turns out that equations (4.3)–(4.6) can be solved if one assumes that

the brane sources are uniformly smeared along w (or F ) direction. In this subsection we

will present such solutions.

We begin by looking at a perturbative solution discussed in the previous subsection.

The right-hand side of equation (4.33) contains D-brane sources and their location is shown

in figure 4a. Let us now smear the branes along coordinate F (see figure 4b): this can be

accomplished by integrating over F in (4.33):24

∂2
F w1 + ∆xw1 + ∆yw1 = −

∑

a

Qa
3δ(y − ya)|F − pa(x)| +

∑

a

Qa
5δ(x − xa)|F − p̃a(y)|.

The last equation can be easily solved, in particular in the region where F > fa(x), ha(y)

one finds:

w1 =

(

−
∑

a

φa(x) +
∑

a

φ̃a(y)

)

F −
∑

a

pa(x)φ̃a(y) +
∑

a

p̃a(y)φa(x) + h(x,y),

∆xφa(x) = −Qa
5δ(x − xa), ∆yφ̃a(y) = −Qa

3δ(y − ya), (∆x + ∆y)h(x,y) = 0. (4.38)

24Such procedure leads to F -independence of e−2H .
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(b)

y

x

y

x

(a)

Figure 4: Smearing D3-D5 intersection: (a) profiles for localized D3 (red) and D5 (blue) branes;

(b) hypersurfaces corresponding to boundary conditions for smeared intersections.

By construction, function w1 should vanish at infinity of (x,y) space, this implies that

h(x,y) = 0. Combining this result with zeroth order solution (w = F ), we find a relation
[

1 + ǫ
∑

a

φa(x)

]

(

w −
∑

p̃a(y)

)

=

[

1 + ǫ
∑

a

φ̃a(y)

]

(

F −
∑

pa(x)

)

+ O(ǫ2). (4.39)

It turns out that this linearized expression can be easily promoted into an exact solution

of the system (4.3)–(4.6): we begin with assuming the following relation:

w =
q̃(y)

q(x)
(F − p(x)) + p̃(y), (4.40)

where p, p̃, q, q̃ are harmonic functions in appropriate variables which are also allowed to

have pointlike sources. With this ansatz one can simplify equations (4.3), (4.4) away from

the sources:

∂we−2φ = 0, ∂F e−2φ = 0, (4.41)

so the dilaton is a function of x and y. Finally, equation (4.6) becomes:25

q∆y(q−1e−2φ) + q̃∆x(q−1e−2φ) = −
∑

Qa
1δ(x − x

(a)
F )δ(y − y

(a)
F ). (4.42)

We conclude that the geometry is specified by four harmonic functions (p, p̃, q, q̃) and a

dilaton satisfying (4.42):

ds2 = eH
[

−e3φ/2dt2 + e−φ/2dx2
3

]

+ e−H−φ/2dy2
5 + e−H+3φ/2(dF + e2H∂xwdx)2

F5 =
1

4
d [∗5dyw] + dual, F3 = −d(e2H ∗

3dxw), H3 = d
[

e2φ(dF + e2H∂xwdx)
]

dt,

e2H =
q(x)

q̃(y)
, w =

q̃(y)

q(x)
(F − p(x)) + p̃(y). (4.43)

25We also added string sources to the right-hand side of that equation.
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Notice that function p̃ has no effect on the geometry and function p can be eliminated by

shifting F . Thus without loss of generality we can set p = p̃ = 0, then the solution is

parameterized by three harmonic functions q, q̃ and q−1e−2φ which are sourced by D5, D3

branes and fundamental strings. D branes can be superposed freely, then equation (4.42)

allows one to find the dilaton for any distribution of fundamental strings.

4.7 Other intersecting branes in IIB supergravity

The solution (4.1) can be easily modified to describe other 1/4-BPS brane intersections in

IIB supergravity. While generically the metric in (4.1) has no isometries (apart from time

translation which is a consequence of supersymmetry), one can also look at particular solu-

tions which are invariant under translations in some xi or yi. Starting from such solutions,

one can apply various dualities to find geometries produced by some other configuration of

intersecting branes. The branes in the resulting solutions are partially smeared, but from

the structure of the geometries it will be clear how to generalize them to the completely

localized intersections. In this subsection we will write the geometries produced by such

brane configurations.

The brane intersections preserving 8 supercharges have been classified in section 2.1

and here we will give a geometric description of the configurations appearing in the first

two lines of equation (2.6). We already did it for the (D3123,D556789, F14) intersections

and it turns out that all other cases can be found by using various dualities:







D3123

D556789

F14







S−→







D3123

NS556789

D14







T56−→







D512356

NS556789

D3456







T78−→







D71235678

NS556789

D545678







T23↓ T25↓






D11

D72356789

F14













D3135

KK1234

D3245







(4.44)

Let us summarize the resulting geometries.26

D1-D7-F1 solution:

ds2
S = eH

[

−e2φdt2 + dx2
]

+ e−Hdy2
7 + e−H+2φ(∂wFdw + ∂yFdy)2

eΦ = eφ−H , H3 = d
[

e2φ(∂wFdw + ∂yFdy)
]

dt, F1 =
1

2
d(∂xF ),

F7 = d
[

e−2H ∗
7dyF

]

, F3 ≡ dC2 + C0H3 = − ∗ F7. (4.45)

26To perform T duality, we are using conventions summarized in [36]. However, one should notice that

in this paper we use normalization of fluxes which is conventional in supergravity [37], while the T duality

rules are more natural in the string frame. Apart from the usual rescaling of the metric (ds2
S = eφ/2ds2

E),

one should also recall that F
(string)
5 = 4F

(SUGRA)
5 , G

(string)
3 = G

(SUGRA)
3 (see [30] and appendix A for

details).
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D1-D3-NS5 solution:

ds2
S = eH−φ

[

−e2φdt2 + dx2
3

]

+ e−H−φdy2
5 + e−H+φ(∂wFdw + ∂yFdy)2

eΦ = e−φ, F5 = −1

4
d

[

e−2H ∗
5dyF

]

+ dual (4.46)

F3 = −d
[

e2φ(∂wFdw + ∂yFdy)
]

dt, H3 = d( ∗
3dxF ).

D3-D3-KK solution:

ds2
S = eH−φ

[

e2φ(−dt2 + dz2) + dx2
2

]

+ e−H−φdy2
4 + e−H+φ(∂wFdw + ∂yFdy)2

+eφ−H(du + ǫij∂xiFdxj)
2,

eΦ = 1 (4.47)

F5 = −1

4

{

d
[

e−2H ∗
4dyF

]

+ d
[

e2φ(∂wFdw + ∂yFdy)
]

dtdz
}

(du + ǫij∂xiFdxj) + dual.

D3-D5-NS5 solution:

ds2
S = eH−φ

[

e2φdz2
1,2 + dx2

3

]

+ e−H−φdy2
3 + e−H+φ(∂wFdw + ∂yFdy)2

eΦ = eH , F3 = −d
[

e−2H ∗
3dyF

]

, H3 = d( ∗
3dxF ) (4.48)

F5 = −1

4
d

[

e2φ(∂wFdw + ∂yFdy)
]

d3z + dual.

D5-D7-NS5 solution:

ds2
S = eH−φ

[

e2φdz2
1,4 + dx2

3

]

+ e−H−φdy2 + e−H+φ(∂wFdw + ∂yFdy)2

eΦ = e2H+φ, F1 = d
[

e−2H∂yF
]

, H3 = d( ∗
3dxF ) (4.49)

F7 = −d
[

e2φ(∂wFdw + ∂yFdy)
]

d5z, F3 ≡ dC2 + C0H3 = − ∗ F7.

In all solutions written above, F and eφ depend on appropriate numbers of xi and yj and

these functions satisfy the generalizations of equations (4.3), (4.4), (4.6):

∂we−2φ + ∆xF |y,w = 0, e2H = ∂wF |x,y,

∂F e−2H−2φ + (∆yw)|x,F = 0, (4.50)

∆ye−2φ + ∆xe−2φ−2H + ∆y(e2H∂xiw∂xiw)|x,F = 0.

The classification of boundary conditions follows the logic that was used in section 4.2, and

we will not repeat that analysis here. The arguments of section 4.5 show that once the

brane sources are accounted for by the proper boundary conditions, the solution exists and

it is unique. The geometries involving D7 branes have the standard problem associated

with low co-dimension: for example in the case of D5-D7-NS5 intersection, the linearized

equation for w becomes

∂2
F w1 + ∆xw1 + ∂2

yw1 = −
∑

a

Qa
7δ(y − ya)θ(F − pa(x)) +

∑

a

Qa
5δ(x − xa)θ(F − p̃a(y))
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and non-zero values of Qa
7 lead to e−2H which logarithmically diverges at infinity. While the

argument about existence of solution still goes through, it is clear that D7 branes modify

flat asymptotics, but we will not discuss this further.

To summarize, we constructed the gravity solutions for all intersecting branes appear-

ing in the first two lines of (2.6). All such solutions are characterized by two functions

satisfying coupled differential equations (4.50). The situation with intersections in the last

line of (2.6) (which can be interpreted as branes inside branes) is slightly different. While

it is very easy to find solutions describing smeared intersections, it appears that the local-

ized intersections do not exist [38].27 The smeared D1-D5 intersection has a very peculiar

property: in addition to the standard flat D1, one can find more general solutions which

preserve the same amount of SUSY, but describe arbitrary profiles of ”D1-D5 string” [40].

It would be interesting to see whether there is a similar generalization of the solutions

presented here. In the case of D1-D5 system one can also add a momentum charge to

produce geometries preserving 4 supercharges28 and it would be nice to find a counterpart

of such 1/8-BPS configurations for the setup discussed here.

5. Solutions in M theory

So far we looked at the geometries produced by D3-D5-F1 system in type IIB SUGRA.

However as we discussed in section 2.4 this setup has a natural counterpart in M theory

which contains M5 and M2 branes. One can start from scratch and look for geometries

describing such M2-M5 configurations, but since we already know the type IIB solutions,

one can get eleven dimensional geometries by following the duality chains. It turns out, we

can proceed in three directions: one gives M2-M5-M5’ which was described before, and the

other two lead to M2-M2’-KK and to M5-KK-P systems. In this section we will discuss all

three cases.

Let us look at eight brane intersections which appear in (2.7). The geometries corre-

sponding to five of them can be found by superposing harmonic functions, and the remain-

ing three configurations are related to D3-D5-F1 system by the following dualities:







M212

KK124(10)

M24(10)







T3L←−







D3123

D556789

F14







T5L−→







M51235(10)

M56789(10)

M24(10)







T4L↓






M51234(10)

KK123(10)

P4







(5.1)

27The only Dp-D(p+4) configuration for which localization is possible is D2-D6 in type IIA and the

relevant gravity solution has been constructed in [39].
28The equations describing such system were written in [41, 42] and some particular solutions were

constructed in [43, 42].
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Here L labels a lift from ten to eleven dimensions. To be more precise, after T duality

and a lift one finds a smeared intersection in M theory, however as we will see below, in

some cases the unsmeared form of the solutions can be easily guessed and checked. In this

section we will discuss three eleven dimensional solutions appearing in (5.1) and discuss

some of their properties.

5.1 M2-M5-M5’ geometry

Let us go back to the general solution (4.1) and assume a translational invariance in z = y5.

Then one can perform a T duality along this direction to get the following metric in the

string frame:29

ds2
IIA = eH

[

−e2φdt2 + dx2
3 + dz2

]

+ e−H
[

dy2
4 + e2φ(dF − e2H∂xwdx)2

]

eΦ = eφ+H/2, H3 = d
[

e2φ(∂wFdw + ∂yFdy)
]

dt,

F4 =
1

2
d(ǫijk∂xk

Fdxij) ∧ dz +
1

3!
d

[

e−2Hǫijkm∂ymFdyijk
]

. (5.2)

Performing a lift to M theory,30 we find a geometry

ds2
11 = e−2φ/3

[

e2H/3
[

e2φds2
1,1 + dx2

3 + dz2
]

+ e−4H/3
[

dy2
4 + e2φ(dF − e2H∂xwdx)2

]]

F4 =
1

2
d(ǫijk∂xk

Fdxij) ∧ dz +
1

3!
d

[

e−2Hǫijkm∂ymFdyijk
]

+d
[

e2φ(∂wFdw + ∂yFdy)
]

∧ d2s1,1. (5.3)

This solution is derived assuming translational invariance along z direction, but one can see

that this restriction can be relaxed, so we find a more general eleven dimensional geometry:

ds2
11 = e−2φ/3

{

e2H/3
[

e2φds2
1,1 + dx2

4

]

+ e−4H/3
[

dy2
4 + e2φ(∂wFdw + ∂yFdy)2

]}

F4 = d(∗xdF ) + d
[

e−2H ∗
ydF

]

+ d
[

e2φ(∂wFdw + ∂yFdy)
]

∧ d2s1,1. (5.4)

The equations (4.3)–(4.6) still hold, but now both x and y are four-component vectors. To

detect the sources we look at the points where the warp factor in front of R1,1 goes to zero.

Since there are only two types of branes in M theory, one should look for the objects whose

worldvolume is either 3– or 6-dimensional. This leads to the following three possibilities:

I. Boundary conditions for M5 branes. We assume that R1,1 combines with x to

give a worldvolume of M5 brane. This implies that eφ remains finite and in this case the

boundary conditions for (4.3)–(4.6) were analyzed in section 4.2: we concluded that to

have regular branes one needs

yi = y
(0)
i , F = f(x), ∆xf(x) = 0. (5.5)

The only difference in the present case is the dimensionality of vectors x and y.

29So far in this paper we have been using Einstein frame and normalization of fluxes which comes from

type IIB supergravity [37]. To perform T duality one has to rewrite (4.1) in string frame (ds2
S = eφ/2ds2

E)

and use ”stringy” normalization of fluxes: F
(string)
5 = 4F

(SUGRA)
5 (see [30] for details).

30We recall the general type IIA –M theory relation ds2
11 = e4Φ/3(dx11 − C)2 + e−2Φ/3ds2

IIA.
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II. Boundary conditions for M5’ branes. Assuming that the worldvolume is spanned

by R1,1 and y, one concludes that eΨ = eH+φ must remain finite and the boundary condi-

tions in this case are

xi = x
(0)
i , w = h(y), ∆yh(y) = 0. (5.6)

Just as in the type IIB setup, one can show that the conditions (5.5), (5.6) are in a

perfect agreement with probe analysis presented in subsection 2.4.

III. Boundary conditions for M2 branes. In this case the worldvolume is R1,1, then

eH remains finite and one needs to specify the sources in (4.18). Again the only difference

in the present case is that both x and y in (4.18) should be understood as four-vectors.

This set of boundary conditions gives freestanding M2 branes.

Once the appropriate boundary conditions are specified, one can use the perturbative

construction discussed in subsection 4.5 to argue the existence and uniqueness of M theory

solution.

5.1.1 Near-horizon limits and 1/2-BPS states in AdSp × Sq

Following the logic of section 4.4, one can define the near-horizon limits by zooming in on

the vicinity of membranes or M5 branes. To arrive at solutions asymptoting to AdS4 ×S7,

we perform a rescaling

M2 : ds2
1,1 = ǫ−4ds̃2

1,1,

(

x

y

)

= ǫ

(

x̃

ỹ

)

,

(

w

F

)

=
1

ǫ4

(

w̃

F̃

)

, eφ = ǫ3eφ̃

and send ǫ to zero. Notice that this parameter drops out from the equations (4.3)–(4.6),

so the only difference between the old and new solutions is in the boundary conditions at

infinity: both eφ and eH go to one for asymptotically flat space, while

eH → 1, e−2φ → Q

(x2 + y2)3
(5.7)

for the solutions with AdS4 × S7 asymptotics.

To zoom in on the vicinity of M5 branes we perform the rescaling

M5 : ds2
1,1 = ǫ−2ds̃2

1,1, x =
x̃

ǫ
, y = ǫ2ỹ, eH = ǫ3eH̃ , F = ǫ2F̃ , w =

w̃

ǫ4

and send ǫ to zero. The AdS7 × S4 asymptotics correspond to the following boundary

conditions:

eφ → 1, e−2H → Q

(y2 + F 2)3/2
. (5.8)

An alternative way of getting solutions with AdS7 × S4 asymptotics involves the near

horizon limit of M5’ branes:

M5′ : ds2
1,1 =

ds̃2
1,1

ǫ2
,

(

x

w

)

= ǫ2

(

x̃

w

)

, y =
ỹ

ǫ
,

(

eφ

e−H

)

= ǫ3

(

eφ̃

e−H̃

)

, F =
F̃

ǫ4
.
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In fact, one can see that geometry (5.4) as well as equations (4.3)–(4.6) are invariant under

Z2 symmetry which exchanges two types of M5 branes31 and allows one to get one near

horizon limit from the other:

x ↔ y, w ↔ F, eH ↔ e−H , e−2φ ↔ e−2φ−2H . (5.9)

Generic solutions discussed in this section preserve eight supercharges, but in special

cases the supersymmetry can be enhanced. For example, the geometries produced by

parallel membranes (or by M5 branes alone) preserve 16 supercharges. The probe analysis

presented in section 2.1 suggests that among asymptotically-flat geometries, these are the

only solutions with enhanced supersymmetry. However other configurations preserving

16 supersymmetries are possible, but they must have different asymptotics. In the most

interesting cases the amount of SUSY is further enhanced at infinity, so we will look at

solutions which asymptote to AdS4 × S7 or AdS7 × S4. The 1/2-BPS solutions for these

spaces were constructed in [9, 44] and it is easy to embed the geometries of [44] into the

more general setup (5.4).

First we observe that 1/2-BPS configurations in AdSp ×Sq preserve SO(2, 2)×SO(4)2

symmetry,32 so to match them we will assume the rotational invariance in x and y sub-

spaces. We also assume that R1,1 is promoted into AdS3:

dH2
3 = −z2ds2

1,1 +
dz2

z2
. (5.10)

Then one can easily embed the solutions of [44] into the general form (5.4) (similar task

for type IIB geometries was accomplished by equations (3.13), (3.14)), and it appears that

among these solutions only AdS4×S7 and AdS7×S4 can be obtained as some near-horizon

limits of asymptotically-flat geometries.

5.2 Smeared M2-M2’-KK intersection

For an alternative dualization we assume that nothing depends on z = x3, then T duality

along that direction gives a type IIA solution and a further lift produces a geometry in

M theory. To find the type IIA description in terms of F4 (rather than dual six-form), it

is convenient to find a more explicit four-form RR potential corresponding to (4.1). Such

potential obeys an equation:

dC4 = −1

4
(d +∗

10 d)
[

e−2H ∗
5dyF

]

+
1

4
C2 ∧ H3

= −1

4
d

[

e−2H ∗
5dyF

]

−1

4

(

eH+φ ∗̃
8d

[

e−2H ∗
5dyF

]

+ ǫij∂jFdxi ∧ d
[

e2φ(∂wFdw + ∂yFdy)
])

dt dz

≡ −1

4
d

[

e−2H ∗
5dyF

]

− 1

4
G3 ∧ dt dz. (5.11)

31Notice that this is the symmetry of equations, and while it is broken by individual solutions, it can be

used to relate different geometries.
32There are also solutions with SO(6) × SO(3) symmetry [9], but they do not correspond to intersecting

branes and thus do not fit into the ansatz (5.4).
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This relation defines a useful three-form G3 and eight dimensional Hodge dual appearing

in it is taken with respect to the string metric:

ds8 = eHdx2
2 + e−H

[

dy2
5 + e2φ(dF + e2H∂xwdx)2

]

.

Now it is easy to dualize (4.1) along z direction:

ds2
IIA = eH

[

−e2φdt2 + dx2
2

]

+ e−H
[

dy2
5 + dz2 + e2φ(dF + e2H∂xwdx)2

]

eΦ = eφ−H/2, F2 = d
[

ǫik∂kFdxi
]

, H3 = d
[

e2φ(∂wFdw + ∂yFdy)
]

dt,

F4 = −G3 ∧ dt, F6 = −d
[

e−2H ∗
5dyF ∧ dz

]

,

and a lift to M theory produces a geometry describing smeared intersecting branes:

ds2
M = e−2φ/3

{

e4H/3
[

−e2φdt2 + dx2
2

]

+ e−2H/3
[

dy2
5 + dz2

]

}

+e−2H/3+4φ/3
[

(dF + e2H∂xwdx)2 + (dx11 + ǫik∂kFdxi)2
]

,

F4 = d
[

e2φ(∂wFdw + ∂yFdy)dt ∧ dx11

]

− G3 ∧ dt.

While it is easy to guess the solution which is not smeared along z direction:

ds2
M = e−2φ/3

{

e4H/3
[

−e2φdt2 + dx2
2

]

+ e−2H/3dy2
6

}

+e−2H/3+4φ/3
[

(dF + e2H∂xwdx)2 + (dx11 + ǫik∂kFdxi)2
]

,

F4 = −
{

d
[

e2φ(∂wFdw + ∂yFdy)
]

∧ (dx11 + ǫik∂kFdxi) + G̃3

}

∧ dt, (5.12)

G̃3 ≡ eH/2+φ ∗̃
9d

[

e−2H ∗
6dyF

]

,

the translational invariance in x11 seems to be a crucial property of the geometry, and we

will not try to relax it. Notice that the nine dimensional duality in (5.12) is performed

using the metric

ds9 = eHdx2
2 + e−H

[

dy2
6 + e2φ(dF + e2H∂xwdx)2

]

(5.13)

and functions φ,w, F satisfy the system (4.3)–(4.6) with two-component x and six-

component y. Generically the metric (5.12) is expected to have only U(1)×U(1) isometry

(which corresponds to the translations in time and in the direction of smearing x11), but

more symmetric solutions can also be found. For example, requiring that all functions

depend only on the radial directions in x and y, one finds an enhanced SO(6)×U(1)3 sym-

metry. However this isometry should be distinguished from the symmetry of a pointlike

intersection of two membranes: in the first case two of the U(1)s correspond to translations

and one to rotation, and in the second case the roles are reversed:

1 2 3 4 5 − 10

M2smeared • • ∼
M2 • •

1 2 3 4 5 − 10

M2 • •
M2 • •

(5.14)
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In the near horizon limit the geometry produced by two intersecting branes has an enhanced

SO(6) × SO(2, 1) symmetry and the corresponding metrics can be specified in terms of

solutions of Toda equation [44]. It would be very interesting to find an asymptotically flat

solution describing the localized intersection (i.e. the second configuration in (5.14)) and

compare with [44]. We will not attempt to do this here.

5.3 M5 brane, KK monopole and a plane wave

Let us now discuss the last possible duality mentioned in (5.1). To proceed we need to

assume an extra isometry in the direction orthogonal to x and y and it appears that there

are two natural possibilities: we can require a translational invariance in either F or w.

Let us consider these cases separately.

T duality along w. Assuming a translational isometry in w, we find restrictions on F :

F = wq(x) + F̃ (x,y), ∆xq(x) = 0 : e2H = q. (5.15)

This leads to significant simplifications in the equations (4.3), (4.4):

∆xe2H = 0, ∂ye2H = 0, ∆xF̃ = 0, ∇y(e−2H∇yF̃ ) = 0, (5.16)

Of course, one should add sources to some of these equations and the relevant analysis for

smeared branes was performed in section 4.6. Applying it to the present case, we arrive at

a special case of (4.43), (4.42) corresponding to q̃(y) = 1:

ds2 = eH
[

−e3φ/2dt2 + e−φ/2dx2
3

]

+ e−H−φ/2dy2
5 + e3H+3φ/2dw2,

F5 = 0, F3 =∗
3 dxq ∧ dw, H3 = de2φ+2H ∧ dw ∧ dt,

e2H = q(x), F = q(x)w, q∆y(q−1e−2φ) + ∆x(q−1e−2φ) = 0. (5.17)

Unfortunately, this system does not contain D3 branes. However it is still interesting to

perform a T duality along w and an M theory lift to produce a pure metric in eleven

dimensions:

ds2
M = e2H

[

−e2φdt2 + dx2
3

]

+ e−2H(dx11 − ω1)
2 + e−2H−2φ(dw − e2H+2φdt)2 + dy2

5

dω1 ≡ ∗
3dxe2H ∆xe2H = 0, e2H∆y(e−2H−2φ) + ∆x(e−2φ−2H) = 0. (5.18)

This solution corresponds to a smeared configuration of a plane wave and KK monopole:

1 2 3 4 5 6 7 8 9 11

KK • • • • • • ∼
P • ∼

(5.19)

and it is easy to guess a non-smeared solution corresponding to an arbitrary hyper-Kahler

base in four dimensions:33

ds2
M = −2dwdt + e−2H−2φdw2 +

[

ds2
HK + dy2

5

]

,

∆y(e−2H−2φ) + ∆HK(e−2φ−2H) = 0. (5.20)

33This solution can be generalized even further by replacing R5
y → HK′ × R1, but such

(KK1234 , KK5678, P9) system preserves only four supercharges, and in this paper we are interested in

1/4-BPS intersections.

– 43 –



J
H
E
P
0
9
(
2
0
0
7
)
0
9
3

Let us now discuss another possible dualization.

T duality along F . Assuming that (4.1) is invariant under translations in F , we find

that w is linear in F and e−2H is a harmonic function which depends only on y. Then the

analysis of section 4.6 implies that the D3-D5-F1 geometry is a particular case of (4.43):

ds2 = eH
[

−e3φ/2dt2 + e−φ/2dx2
3

]

+ e−H−φ/2dy2
5 + e−H+3φ/2dF 2,

F5 =
1

4
dF ∧∗

5 dye
−2H + dual, F3 = 0, H3 = de2φ ∧ dF ∧ dt,

e−2H = q̃(y), w = q̃(y)F. (5.21)

Dualizing along F direction and lifting to M theory, we arrive at geometry describing M5

brane with longitudinal momentum:

ds2
M = e2H/3

[

−2dt dF + e−2φdF 2 + dx2
3 + dx2

11

]

+ e−4H/3dy2
5,

F4 = ∗
5dye

−2H , ∆ye−2H = 0, ∆ye−2φ + e−2H∆xe−2φ = 0. (5.22)

While this solution was obtained assuming translational invariance in x11, this requirement

can be relaxed since x11 appears on the same footing as three other xi.

To summarize, we found the geometries produced by either (KK,P ) or (M5, P ) sys-

tems, i.e. we were able to put together two elements of the triple:

1 2 3 4 5 6 7 8 9 10

M5 • • • • •
KK • • • • • •
P •

(5.23)

It appears that a more general geometry containing both KK monopoles and M5 branes

cannot be found by applying dualities to D5-D3-F1 system and one needs to solve the

equations of motion in eleven dimensions. We leave this problem for future publication.

5.4 Summary

Let us summarize the results of this section. By applying various dualities to D5-D3-F1

solution, we have constructed geometries produced by various brane intersections which

preserve eight supercharges in eleven dimensions. One of such intersections (M5-M5-M2)

was completely localized and in this case we found a perfect agreement between gravity

picture and probe analysis presented in section 2.4. The other two intersections were par-

tially delocalized: M2-M2-KK was smeared in one of the directions along M2 brane and

M5-KK-P system was smeared in the direction orthogonal to the monopole and to the mo-

mentum. It would be very interesting to find the localized version of the last two solutions.

In the case of M5-M5-M2 intersection one can go to the near-horizon limit of one of the M5

branes, then an enhancement of the (super)symmetry is possible. The relevant geometries

preserve 16 supercharges along with SO(2, 2)×SO(4)2 bosonic symmetries and correspond-

ing metrics were constructed in [44]. In this section we saw how such symmetric solution

can be embedded in a general solution (5.4). Notice that a generically the supersymmetric

solution (5.4) is only expected to have I SO(2, 1) isometry and the geometries constructed

in [44] present a very special class of solutions.
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6. Discussion

D branes are essential part of string theory so it is very important to understand their

dynamics. There are two ways of looking at branes: one is based on open string physics

and another uses a picture in terms of closed strings. While both methods have been equally

successful in describing branes preserving 16 supercharges, for less symmetric branes the

situation is more complicated. At low energies the open string physics is well-described by

the DBI action and in this approximation various brane intersections have been extensively

studied in the past. However from the point of view of closed strings, the low-energy

dynamics is governed by supergravity and in the past very few 1/4-BPS configurations have

been described using this language. In the known solutions the positions of the branes were

specified from the beginning and the geometries were constructed using so-called ”harmonic

rule”: different branes obeyed independent linear equations. In this paper we constructed

a large class of supersymmetric solutions which are governed by two functions satisfying a

system of nonlinear PDEs and the positions of the branes are determined dynamically. Of

course, for BPS objects one expects to have a superposition principle, so it is possible that

the nonlinear equations (4.3)–(4.6) are integrable. If this is indeed the case, it would be

very nice to find a map to the appropriate variables in which this system becomes linear.

Despite the lack of such map at the moment, the superposition principle did manifest itself

in the boundary conditions: in section 4.2 we showed that for consistency the branes should

follow harmonic profiles (in a perfect agreement with probe analysis) and the construction

of section 4.5 demonstrates that any combination of such branes leads to a unique solution.

It is very natural to consider strings ending on branes which were discussed in this

paper: looking at 1/4-BPS configurations (2.6) in IIB string theory one observes that

they fall into two categories: the geometries corresponding to the last two lines can be

constructed using ”harmonic rule” and they have been studied in the past, while all inter-

sections appearing in the first two lines are captured by the ansatz presented in this paper.

To be more precise, we explicitly derived the D3-D5-F1 solution in section 4.1 and other

geometries were obtained from it in section 4.7.

While we were not able to solve equations for the most general distribution of branes,

some special solutions can be constructed. In particular, in section 3.3 we showed that the

geometric duals of non-commutative field theories [33, 34] can be recovered from our ansatz.

In section 4.6 we also found an explicit solution for a smeared D3-D5 intersection. Although

we were mostly interested in asymptotically flat geometries, the system (4.3)–(4.6) is also

applicable to solutions embedded in different spaces, in particular in sections 3.2 and 5.1.1

we showed that 1/2-BPS geometries AdSp × Sq asymptotics [12, 44] are included as very

special cases into the ansatz discussed here.

The results of our investigation are very encouraging. We were able to find solutions

preserving only eight supercharges and no bosonic isometries (apart from the time transla-

tion which is a consequence of supersymmetry). One may hope that similar techniques can

be applied to situations with lower supersymmetry and all brane intersections preserving

four supercharges can also be classified. In fact, the equations governing some of such con-

figurations are known [41, 42], and it would be nice to describe other intersections as well.
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A. Conventions

The main goal of this paper is to find a geometric description of intersecting branes, and one

needs to solve equations coming from supergravity to accomplish this task. In this appendix

we collect some basic facts about Type IIB supergravity following the the standard notation

of [37].

Since we are looking for bosonic solutions preserving supersymmetry, so we begin by

summarizing the SUSY variations for such geometries

δλ = i6 Pǫ∗ − i

24
γmnpGmnpǫ,

δψm =

(

∇m − i

2
QM

)

ǫ +
i

480
6 F 5γmǫ +

1

96
(−γm 6 G − 26 Gγm)ǫ∗. (A.1)

Supersymmetry parameter ǫ is a complex Weyl spinor (Γ11ǫ = −ǫ), and the general ex-

pressions for two vectors Qm, Pm and a scalar B can be found in [37] (see also [45]). As

explained in section 3, we are interested in solutions with vanishing axion C(0), this implies

that τ = ie−φ, Qµ = 0, and

Pm =
1

2
∂mφ, B =

1 − e−φ

1 + e−φ
, f−2 =

4e−φ

(1 + e−φ)2
,

G3 = f(H3 + iF3 − BH3 + iBF3) = e−φ/2H3 + ieφ/2F3. (A.2)

Substituting these expressions into (A.1) and requiring the variations to vanish, we arrive

at the equations which will be analyzed in the next two appendices:

δλ =
i

2
6 ∂φǫ∗ − i

24
γmnpGmnpǫ = 0, (A.3)

δψM = ∇M ǫ +
i

480
6 F 5γM ǫ +

1

96
(−γM 6 G − 26 GγM )ǫ∗ = 0.

While some of the equations of motion of type IIB supergravity follow from the last two

relations, a generic background satisfying (A.3) might not be a solution of the theory. In

particular, one always has to supplement SUSY variations with Bianchi identities for the

field strengths, but sometimes even this system is not complete and some equations of

motion should be solved explicitly. Let us summarize these equations for C(0) = 0 (see [37]

for the discussion of the general case):

∇2φ = −e−φ

12
HmnpH

mnp +
eφ

12
FmnpF

mnp, dF5 = −1

4
F3 ∧ H3,

d ∗ (e−φH3) = −4F5 ∧ F3, d ∗ (eφF3) = 4F5 ∧ H3, (A.4)

Rmn =
1

2
∂mφ∂nφ +

1

24
FmabcdFn

abcd

+

(

δp
mδq

n − gmngpq

12

)(

e−φ

4
HpabHq

ab +
eφ

4
FmpqFn

pq

)

.
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The field strengths appearing in these equations are related to gauge potentials in the

following way:

H3 = dB2, F3 = dC2, F5 = dC4 −
1

4
C2 ∧ H3. (A.5)

Moreover, the five-form fiend strength must be self-dual: F5 = ∗F5.

Throughout this paper we use normalization which is common in supergravity litera-

ture, but it is slightly different from conventions which are natural from the point of view

of string theory. It is well-known that a metric in the Einstein frame (which is used in

supergravity) is different from a metric seen by a fundamental string propagating on the

geometry:

ds2
S =

eφ/2

√
g

ds2
E . (A.6)

It turns out that there are also differences in normalization of RR fluxes and the detailed

discussion can be found in [30]. To simplify the calculations, we will set both string coupling

constant and Newton’s constant κ to be equal to one (although they can be easily restored),

then the map between string and gravitational quantities found in [30] simplifies:

H
(s)
3 = H3, F

(s)
3 = F3, F

(s)
5 = 4F5. (A.7)

B. Solutions with SO(5) × SO(3) symmetry

In this appendix we study supersymmetry variations for configurations in type IIB super-

gravity which have SO(3) × SO(5) symmetry. This symmetry was motivated in section 3

by looking at a single spherically symmetric spike, and as we will see, once the symmetric

solution is obtained, it is very easy to generalize it to the case of multiple spikes.

B.1 Formulation of the problem

We begin with metric and fluxes given by (3.1), (3.4):

ds2 = −e2Adt2 + e2BdΩ2
2 + e2CdΩ2

4 + hijdxidxj, (B.1)

H3 = 2ω2 ∧ dt, F3 = df2 ∧ dΩ2, F5 = df3 ∧ dΩ4 + dual, eφ.

Here ω2 is a closed two-form in three-dimensional space spanned by xi and all scalars are

assumed to be functions of these three coordinates.

Equations (B.1) guarantee that all bosonic fields have the required symmetry, but we

also need to impose the symmetry on the spinor. To do this we need to review a construction

of invariant spinors on even-dimensional spheres. First we recall that a covariant derivative

∇m along one of the directions on S2 can be rewritten in terms of a derivative ∇̃m on a

unit sphere:

∇S
m = ∇̃S

n − 1

2
γµ

m∂µB. (B.2)
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There are various ways of expressing ∇̃m in terms of gamma matrices, here we will follow

the approach of [12] where it was shown that

∇̃mǫ = − i

2
e−BγmPSǫ, (B.3)

where PS is a hermitean matrix which anticommutes with chirality operator ΓS on S2 and

with gamma matrices along the directions orthogonal to this sphere. The derivatives along

S4 directions can be computed in an analogous way. Notice that equations (A.3) are valid

only in the basis where all gamma matrices are real, this imposes certain reality conditions

on four hermitean matrices: ΓΩ is real while ΓS, PS , PΩ are pure imaginary.

It is convenient to split 6 G into the real and imaginary pieces:

1

24
6 G = G+ + G−, (G±)∗ = ±G±, (B.4)

and an explicit computation gives

G+ = −1

4
e−φ/2−A 6 ω2Γt, G− = −1

4
eφ/2−2B 6 ∂f2ΓS . (B.5)

The last remaining ingredient that enters the equations is

1

480
6 F 5ǫ =

e−4C

2
6 ∂f3ΓΩǫ. (B.6)

Combining all this information, we arrive at the system:

1

2
6 ∂φǫ∗ − (G+ + G−)ǫ = 0, (B.7)

6 ∂Aǫ − ie−4C 6 ∂f3ΓΩǫ +
1

2
(−3G+ + G−)ǫ∗ = 0, (B.8)

(−ie−BPS + 6 ∂B)ǫ − ie−4C 6 ∂f3ΓΩǫ +
1

2
(G+ − 3G−)ǫ∗ = 0, (B.9)

(−ie−CPΩ + 6 ∂C)ǫ + ie−4C 6 ∂f3ΓΩǫ +
1

2
(G+ + G−)ǫ∗ = 0, (B.10)

∇µǫ + i
e−4C

2
6 ∂f3γµΓΩǫ +

1

96
(γµ 6 G − 2{6 G, γµ})ǫ∗ = 0. (B.11)

For future reference we write the complex conjugate of the dilatino equation:

1

2
6 ∂φǫ − (G+ − G−)ǫ∗ = 0. (B.12)

To evaluate the spinor bilinears we will also need the hermitean conjugates of the rela-

tions (B.7)–(B.12):

1

2
ǫT 6 ∂φ − ǫ†(G+ + G−) = 0,

1

2
ǫ† 6 ∂φ − ǫT (G+ − G−) = 0,

ǫ† 6 ∂A + ie−4Cǫ† 6 ∂f3ΓΩ +
1

2
ǫT (−3G+ + G−) = 0,

ǫ†(ie−BPS + 6 ∂B) + ie−4Cǫ† 6 ∂f3ΓΩ +
1

2
ǫT (G+ − 3G−) = 0, (B.13)

ǫ†(ie−CPΩ + 6 ∂C) − ie−4Cǫ† 6 ∂f3ΓΩ +
1

2
ǫT (G+ + G−) = 0,

∇µǫ† − i
e−4C

2
ǫ†γµ 6 ∂f3ΓΩ +

1

96
ǫT (6 G†γµ − 2{6 G†, γµ}) = 0.
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The remaining part of this appendix will be devoted to solving the system (B.7)–(B.12).

B.2 Looking at the projectors and choosing the coordinates

We begin by combining the projectors appearing in (B.8)–(B.12) to construct the equations

that do not contain fluxes:
[

−ie−CPΩ + 6 ∂(A + C − φ

2
)

]

ǫ = 0, (B.14)

[

−ie−BPS + 6 ∂(B − A + φ)
]

ǫ = 0. (B.15)

Depending on a choice of coordinates, each of these two projectors can contain up to four

gamma matrices, however by choosing some special set of coordinates one can simplify

both projectors. Namely we introduce two functions

u = eA+C−
φ
2 , v = eB−A+φ (B.16)

and use them as two of the coordinates. In principle one can worry that u and v are not

independent functions (then they cannot be used as two coordinates), and to show the

independence we evaluate a commutator in two different ways:

ǫ†
{

6 ∂
(

A + C − φ

2

)

, 6 ∂(B − A + φ)

}

ǫ = −e−B−Cǫ†{PΩ, PS}ǫ = 0,

ǫ†
{

6 ∂
(

A + C − φ

2

)

, 6 ∂(B − A + φ)

}

ǫ = 2ǫ†ǫgµν∂µ log u ∂ν log v. (B.17)

We see that not only u and v are independent, but also guv = 0, so we can choose frames34

eu = eudu, ev = evdv, ew = ew(dw + Audu + Avdv),

eu = e−1
u (∂u − Au∂w), ev = e−1

v (∂v − Av∂w), ew = e−1
w ∂w. (B.18)

Here w is introduced as the third coordinate and we still have some freedom in choosing

it. In particular, it is convenient to impose a gauge Av = 0. Such choice still leaves

reparameterizations w → w′(w, u) and we will fix this freedom later.

With this choice of frames the geometric projectors (B.14), (B.15) become

[

−ive−BPS + e−1
v Γv

]

ǫ = 0,
[

−iue−CPΩ + e−1
u Γu

]

ǫ = 0. (B.19)

We conclude that the spinor satisfies two projections:

(1 − iΓvPS)ǫ = (1 − iΓvPS)ǫ∗ = 0, (1 − iΓuPΩ)ǫ = (1 − iΓuPΩ)ǫ∗ = 0, (B.20)

and we also extract the expressions for eu, ev:

ev = eA−φ, eu = e−A+φ/2. (B.21)

34Here and below we use ordinary indices u, v, . . . in curves spacetime and we use bold letters u,v, . . . to

denote frame indices. The exception is made for the gamma matrices, where we have γµ with spacetime

index and Γa with frame index.
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Let us construct a projector which does not contain G+:

6 ∂
(

A − 3

4
φ

)

ǫ − ie−4C 6 ∂f3ΓΩǫ − G−ǫ∗ = 0,

6 ∂
(

A − 3

4
φ

)

ǫ − ie−4C 6 ∂f3ΓΩǫ +
1

4
eφ/2−2B 6 ∂f2ΓSǫ∗ = 0, (B.22)

and apply various projectors to this relation:

(1 + iΓvPS)(1 − iΓuPΩ) : Γu∂u

(

A − 3

4
φ

)

ǫ − ie−4CΓw∂wf3ΓΩǫ = 0,

(1 − iΓvPS)(1 + iΓuPΩ) : Γv∂v

(

A − 3

4
φ

)

ǫ +
1

4
eφ/2−2BΓw∂wf2ΓSǫ∗ = 0, (B.23)

(1 + iΓvPS)(1 + iΓuPΩ) : Γw∂w

(

A− 3

4
φ

)

ǫ−ie−4CΓu∂uf3ΓΩǫ+
1

4
eφ/2−2BΓv∂vf2ΓSǫ∗ = 0

(1 − iΓvPS)(1 − iΓuPΩ) : −ie−4CΓv∂vf3ΓΩǫ +
1

4
eφ/2−2BΓu∂uf2ΓSǫ∗ = 0.

Let us assume that the derivatives appearing in the first equation do not vanish (this

assumption is true even for the flat D3 branes without fluxes), then we find a projector

ΓuΓwΓΩǫ = iaǫ. (B.24)

The third equation can be rewritten as

∂w

(

A − 3

4
φ

)

ǫ − ae−4C∂uf3ǫ +
1

4
eφ/2−2BΓwΓv∂vf2ΓSǫ∗ = 0, (B.25)

and assuming a nontrivial v-dependence in f2, we arrive at a projection:

ΓwΓvΓSǫ∗ = bǫ, ΓwΓvΓSǫ = −bǫ∗, b2 = 1. (B.26)

Imposing the projections listed above, we reduce the system (B.23) to a set of scalar

equations:

∂u

(

A − 3

4
φ

)

+ ae−4C∂wf3 = 0, (B.27)

∂w

(

A − 3

4
φ

)

− ae−4C∂uf3 +
b

4
eφ/2−2B∂vf2 = 0, (B.28)

∂v

(

A − 3

4
φ

)

− b

4
eφ/2−2Be−1

w ∂wf2 = 0, (B.29)

e−4C∂vf3 +
ab

4
eφ/2−2B∂uf2 = 0. (B.30)

Finally we look at the dilatino equation:

1

2
6 ∂φǫ +

1

4
e−φ/2−A 6 ω2Γtǫ

∗ − 1

4
eφ/2−2B 6 ∂f2bΓvΓwǫ = 0. (B.31)
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Acting by various projectors, we find:

2e−φ/2−AΓuvωuvΓtǫ
∗ − beφ/2−2BΓu∂uf2ΓvΓwǫ = 0,

2Γu∂uφǫ + 2e−φ/2−AΓuwωuwΓtǫ
∗ = 0,

2Γv∂vφǫ + 2e−φ/2−AΓvwωvwΓtǫ
∗ + beφ/2−2Be−1

w ∂wf2Γvǫ = 0,

2Γw∂wφǫ − beφ/2−2BΓv∂vf2ΓvΓwǫ = 0.

Assuming that ω does not vanish, we find the last projector:

ΓwΓtǫ
∗ = cǫ, ΓwΓtǫ = −cǫ∗, c2 = 1, (B.32)

and the equations become

2ce−φ/2−Aωuv − beφ/2−2B∂uf2 = 0, (B.33)

∂uφ + ce−1
w e−φ/2−Aωuw = 0, (B.34)

∂vφ + ce−1
w e−φ/2−Aωvw +

b

2
eφ/2−2Be−1

w ∂wf2 = 0, (B.35)

2e−1
w ∂wφ − beφ/2−2B∂vf2 = 0. (B.36)

At this point we already accounted for all projections which should be imposed on the

spinor, let us summarize these projections:

(Γ11 + 1)ǫ = (1 − iΓvPS)ǫ = (1 − iΓuPΩ)ǫ = (ΓuΓwΓΩ − ia)ǫ = 0,

ΓwΓvΓSǫ∗ = bǫ, ΓwΓtǫ
∗ = cǫ. (B.37)

Notice that only five of these projectors are independent since

Γ11 = iΓuΓwΓΩΓtΓvΓS : Γ11ǫ = acb ǫ. (B.38)

This reproduces the chirality projection in ten dimensions once we require that

abc = −1. (B.39)

To count the number of supersymmetries one should recall that we encountered only eight

different matrices in the spinor equations (B.7)–(B.11). These objects can be realized

as 16 × 16 matrices and just for illustration we write a particular explicit representation

(although it is only existence of such representation which will be used):

Γa = γ(4)
a ⊗ 14, PS = γ5 ⊗ σ3 ⊗ 12, PΩ = γ5 ⊗ σ2 ⊗ σ2,

ΓS = 14 ⊗ σ2 ⊗ 12, ΓΩ = 18 ⊗ σ3. (B.40)

In this representation ǫ is a 16-component complex spinor and five independent projections

reduce it to one-component real object, so as expected no additional projection can be

imposed. To count the number of supersymmetries in ten dimensions we recall that the

gamma matrices on S2 and S4 were suppressed in this discussion, and once they are re-

introduced the size of spinor grows by a factor of 2× 4 = 8. So in type IIB we end up with
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a spinor with eight real independent components, this corresponds to a 1/4 BPS state.

This is consistent with a brane probe analysis.

To summarize, we have analyzed the dilatino equation as well as three components

of gravitino equation (B.7)–(B.10) and we showed that these four projectors lead to the

restrictions on the Killing spinor (B.37) and to the bosonic relations (B.16), (B.21), (B.27)–

(B.30), (B.33)–(B.36). We can still use the differential equations (B.11) to extract some

additional information about bosonic fields, and we will do this in the next subsection.

B.3 Analysis of bilinears

Let us now look at the differential equation (B.11) along with its conjugate:

∇µǫ + i
e−4C

2
6 ∂f3γµΓΩǫ +

1

96
(γµ 6 G − 2{6 G, γµ})ǫ∗ = 0, (B.41)

∇µǫ† − i
e−4C

2
ǫ†γµ 6 ∂f3ΓΩ +

1

96
ǫT (6 Gγµ − 2{6 G, γµ}) = 0. (B.42)

These two equations can be combined to evaluate a derivative of the bilinear ǫ†ǫ:

∇µ(ǫ†ǫ) + i
e−4C

2
ǫ†[6 ∂f3, γµ]ΓΩǫ +

1

96

[

−2ǫ† 6 Gγµǫ∗ − ǫ†γµ 6 Gǫ∗ + cc
]

= 0. (B.43)

To eliminate 6 G from this equation we use (B.10) and a hermitean conjugate of (B.7):

− 1

48
6 Gǫ∗ = (−ie−CPΩ + 6 ∂C)ǫ + ie−4C 6 ∂f3ΓΩǫ,

1

24
ǫ† 6 G =

1

2
ǫT 6 ∂φ.

Substituting these relations into (B.43), one finds:

∇µ(ǫ†ǫ)+i
e−4C

2
ǫ†[6 ∂f3, γµ]ΓΩǫ− 1

2
∂µφǫ†ǫ+

[

−eu
µe−C +∂µC

]

ǫ†ǫ + ie−4Cǫ†γµ 6 ∂f3ΓΩǫ = 0.

(B.44)

Next we notice that the projection ΓΩǫ = −iΓuǫ implies that ǫ†ΓΩǫ = 0, so the terms

with f3 cancel out in the above equation. We also recall that according to (B.18), (B.21),

eu
µdxµ = e−A−φ/2du, then equation (B.44) simplifies:

eφ/2−C∇µ(e−φ/2+Cǫ†ǫ) − e−C−A−φ/2ǫ†ǫ ∂µu = 0.

Finally recalling the definition (B.16), we eliminate C from the last relation and solve the

resulting equation for the bilinear:

∇µ(e−Aǫ†ǫ) = 0 : ǫ†ǫ = eA. (B.45)

At the last stage we fixed a constant in normalization of ǫ.

Let us now consider a vector ǫ†ΓΩγµPΩǫ, which has a very simple form due to various

projectors:

ǫ†ΓΩγνPΩǫ dxν = −aǫ†γνΓwǫ dxν = −aew
µ ǫ†ǫ dxµ. (B.46)
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This vector obeys a differential equation:

∇µ(ǫ†ΓΩγνPΩǫ) − ie−4Cǫ†γ(ν 6 ∂f3γµ)PΩǫ +
1

96
[Uµν + Vµν ] = 0, (B.47)

Uµν = ǫ†ΓΩγνPΩ(γµ 6 G − 2{6 G, γµ})ǫ∗, Vµν = ǫT (6 Gγµ − 2{6 G, γµ})ΓΩγνPΩǫ.

In particular, we will be interested in the antisymmetric part of this relation since it will

give an exterior derivative of the one-form (B.46). Let us consider various terms separately.

U[µν] = −aǫ†γ[ν(−γµ] 6 G − 26 Gγµ])Γwǫ∗ :

−4eφ/2+Aǫ†γ[µG+γν]Γwǫ∗ = ǫ†γ[µ 6 ωΓtγν]Γwǫ∗

= cǫ†γ[µ 6 ωγν]ǫ = 2cωµνǫ†ǫ

−4eφ/2+Aǫ†γµνG+Γwǫ∗ = ǫ†γµν 6 ωΓtΓwǫ∗

= −cǫ†γµν 6 ωǫ = 2cωµνǫ†ǫ

−4e2B−φ/2ǫ†γ[µG−γν]Γwǫ∗ = ǫ†γ[µ 6 ∂f2ΓSγν]Γwǫ∗

= −bǫ†γ[µ 6 ∂f2γν]Γvǫ

= 0

−4e2B−φ/2ǫ†γµνG−Γwǫ∗ = ǫ†γµν 6 ∂f2ΓSΓwǫ∗

= −bǫ†γµν 6 ∂f2Γvǫ

U[µν] = 6a(6ce−A−φ/2ωµνǫ
†ǫ − e−2B+φ/2bǫ†γµν 6 ∂f2Γvǫ), (B.48)

Vµν = −aǫT (−2γµ 6 Gγν − 6 Gγµγν)Γwǫ :

1

6
V ∗

[µν] = −4aǫ†(−2γ[µ(G+ − G−)γν] − (G+ − G−)γµν)Γwǫ∗

= a(−6ce−A−φ/2ωµνǫ†ǫ + e−2B+φ/2bǫ†γµν 6 ∂f2Γvǫ). (B.49)

To evaluate the above expressions it was useful to construct a combination of projectors:

ΓΩPΩǫ = −aΓwǫ, ΓΩPΩǫ∗ = aΓwǫ∗.

Notice that the right-hand side of (B.49) is real: it is obvious for the first term, while for

the second one one needs to use projectors to evaluate

ǫ†γµν 6 ∂f2Γvǫ = eA
(

∂νf2e
v
µ − ∂νf2e

v
µ

)

. (B.50)

Then we conclude that V[µν] = V ∗
[µν] = U[µν] and equation (B.47) becomes

−d(eAew
µ dxµ) − 1

8

[

6ce−φ/2ωµν − 2beA+φ/2−2B∂νf2e
v
µ

]

dxµν = 0. (B.51)

Let us look at various components of this two-form. We begin with a coefficient in front

of du ∧ dv:

d(aeAew
µ dxµ)uv −

1

4

[

6ce−φ/2ωuv + be2A−φ/2−2B∂uf2

]

= 0. (B.52)
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Similarly we evaluate the two remaining components:

d(aeAew
µ dxµ)uw − 3

2
e−φ/2cωuw = 0, (B.53)

d(aeAew
µ dxµ)vw +

[

−3c

2
e−φ/2ωvw +

1

4
e2A−φ/2−2Bb∂wf2

]

= 0. (B.54)

To summarize, in this subsection we analyzed the equations for the scalar and vector

bilinears, this led to normalization of the Killing spinor (B.45) and to three differential

equations (B.52)–(B.54) for the bosonic fields. These equations along with relations dis-

cussed in subsection B.2 give a system which is equivalent to the equations for the Killing

spinors, and now we will try to simplify this system.

B.4 Solving the equations

In the previous two subsections we have reduced the dilatino and gravitino equations to

a set of relations for the bosonic fields. The relevant differential equations are (B.27)–

(B.30), (B.33)–(B.36) and (B.52)–(B.54). Let us simplify this set of eleven equations.

We begin with recalling the expression (B.18) for ew and the gauge condition Av = 0.

Introducing h = eAew, we can write

eAew
µ dxµ = h(dw + Audu), ω = d(Bwdw + Budu). (B.55)

Here we parameterized the exact two-form ω in terms of two functions Bw, Bu and one

can still perform a v-independent gauge transformation of a one-form η1 ≡ Bwdw + Budu.

Equation (B.53) takes the form

−∂uh + ∂w(hAu) − 3c

2
e−φ/2(∂uBw − ∂wBu) = 0. (B.56)

Comparing this with equation (B.34):

∂uφ − Au∂wφ + ch−1e−φ/2(∂uBw − ∂wBu) = 0, (B.57)

we arrive at the relation which does not contain fluxes:

∂uh − ∂w(hAu) − 3

2
h(∂uφ − Au∂wφ) = 0 :

∂u(he−3φ/2) − ∂w(e−3φ/2hAu) = 0. (B.58)

It is useful to eliminate fluxes from the equations (B.52), (B.54) as well. To do so one can

use (B.35), (B.34):

b

2
eA−2B−φ/2∂wf2 = −

[

ew∂vφ + ce−φ/2−Aωvw

]

, (B.59)

beφ/2−2B(∂u − Au∂w)f2 = 2ce−φ/2−Ae−A+φ(ωuv − Auωwv) :

be2A−2B∂uf2 = 2(cωuv − Aueweφ/2+A∂vφ). (B.60)
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Substituting this into the equation (B.54), we find

d(aeAew
µ dxµ)vw − 2ce−φ/2ωvw − h

2
∂vφ = 0

−∂vh − 2ce−φ/2ωvw − h

2
∂vφ = 0

∂v(heφ/2 + 2cBw) = 0, (B.61)

while equation (B.52) gives

d(aeAew
µ dxµ)uv +

h

2
Au∂vφ − 2ce−φ/2ωuv = 0

∂v(hAu) +
h

2
Au∂vφ + 2ce−φ/2∂vBu = 0

∂v(heφ/2Au + 2cBu) = 0. (B.62)

The last equation implies that we can use the gauge transformation of η1 to set

Bu = − c

2
heφ/2Au, (B.63)

and equation (B.61) will still hold. We still have a freedom η1 → η1 + dW (w) and to fix it

we rewrite the equation (B.34):

∂uφ − Au∂wφ + ch−1e−φ/2(∂uBw − ∂wBu) = 0

∂uφ +
e3φ/2

2h
∂w(he−3φ/2Au) + ch−1e−φ/2∂uBw = 0

∂u(e2φhe−3φ/2 + 2cBw) = 0. (B.64)

At the last step we used the relation (B.58). Comparing (B.61) and (B.64), we observe

that eφ/2h + 2cBw can only depend on w, so the remaining gauge freedom can be fixed by

requiring that

Bw = − c

2
heφ/2. (B.65)

At this point the equations (B.52)–(B.54), (B.34) were used to show that

ω = − c

2
d

[

heφ/2(dw + Audu)
]

, ∂u(he−3φ/2) − ∂w(e−3φ/2hAu) = 0. (B.66)

The remaining dilatino equations (B.33), (B.35), (B.36) can be rewritten as expressions for

derivatives of the flux f2:

b

2
e2A−2B∂wf2 = −heφ/2∂vφ +

1

2
∂v(heφ/2) =

e2φ

2
∂v(he−3φ/2), (B.67)

be2A−2B∂uf2 = 2(cωuv − Aueweφ/2+A∂vφ) = e2φ∂v(he−3φ/2Au), (B.68)

be3φ/2−2B−A∂vf2 = 2h−1eA∂wφ. (B.69)

This accounts for seven equations, and the remaining four equations (B.27)–(B.30) will be

analyzed later.
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The second equation in (B.66) implies local relations

he−3φ/2 = ∂wF, e−3φ/2hAu = ∂uF (B.70)

with some function F . Then equations (B.67), (B.68) can be simplified and the resulting

relations can be easily integrated:

b∂wf2 = v2∂v∂wF, b∂uf2 = v2∂v∂uF : bf2 = v2∂vF. (B.71)

We also used the fact that the relations (B.70) define F up to an additive v-dependent func-

tion, and this freedom was fixed in the last equation. Finally (B.69) leads to a differential

equation relating F and the dilaton:

∂we−2φ = −∆vF. (B.72)

Let us now go back to the equations (B.27)–(B.30). We begin with simplifying (B.29):

∂v

(

A − 3

4
φ

)

− b

4
e2A−2B−φ/2h−1∂wf2 = 0

∂v(4A − 3φ) − v−2e3φ/2h−1∂w(v2∂vF ) = 0

∂v(4A − 3φ) − e3φ/2h−1∂v(he−3φ/2) = 0

∂v(e
−4A+3φ/2h) = 0 : h = e4A−3φ/2h̃(u,w). (B.73)

Let us recall that h originally appeared in the veilbein as

ew = he−A(dw + Audu) = e3A−3φ/2
[

h̃(u,w)(dw + Audu)
]

. (B.74)

We still have a freedom in reparameterizing w as w → w′(w, u), and it can be used to

simplify the expression in the square bracket by setting h̃ = 1. This fixes the choice of

coordinates up to a shift w → w+W (u). We conclude that equation (B.29) combined with

gauge fixing leads to the relation

h = e4A−3φ/2. (B.75)

Next we simplify the equation (B.27):

(∂u − Au∂w)(A − 3

4
φ) + ae−4C+φ/2e−4A+3φ/2∂wf3 = 0

∂u(4A − 3φ) + ∂uF∂we3φ−4A + 4au−4∂wf3 = 0

∂u(4A − 3φ) − e3φ−4A∂ue4A−3φ + ∂w(4au−4f3 + e3φ−4A∂uF ) = 0

∂w(4au−4f3 + e3φ−4A∂uF ) = 0. (B.76)

Similar manipulations with (B.29) give

e−4C∂vf3 +
a

4
v2e2A−2B−φ(∂u − Au∂w)∂vF = 0 (B.77)

e−4C∂vf3 +
a

4
eφ(∂v(e

−3φ/2hAu) − Au∂v(he−3φ/2)) = 0

e−4C∂vf3 +
a

4
e4A−2φ∂vAu = 0 : ∂v(4au−4f3 + e3φ−4A∂uF ) = 0.
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Equations (B.76), (B.77) imply that

f3 = −a

4
u4e3φ−4A∂uF + f̃3(u) = −a

4
u4Au + f̃3(u). (B.78)

This relation can be used to express for the one-form ew in terms of f3:

ew = e3A−3φ/2(dw − 4au−4f3du + 4au−4f̃3(u)du). (B.79)

We recall that at this point the diffeomorphism invariance is fixed up to a shift w →
w + W (u), and this remaining transformation can be used to set f̃3(u) = 0.

To summarize, we have solved all equations for the Killing spinor except for (B.28) and

we also uniquely specified the choice of coordinates and veilbeins. This led to the following

relations for the metric and the fluxes:

eu = e−A+φ/2du, ev = eA−φdv, ew = e3A−3φ/2(dw + Audu), (B.80)

e4A−3φ = ∂wF, Au =
∂uF

∂wF
,

ω = − c

2
d

[

e4A−φ(dw + Audu)
]

, f2 = bv2∂vF, f3 = −a

4
u4Au. (B.81)

and to a differential equation (B.72) relating F and the dilaton.

Finally we simplify the equation (B.28):

e−3A+3φ/2∂w

(

A − 3

4
φ

)

− aeA−4C−φ/2(∂u − Au∂w)f3 +
b

4
e3φ/2−2B−A∂vf2 = 0

∂w(4A − 3φ) + e4A−4C−2φ(∂u − Au∂w)(u4Au) + e2φ∆vF = 0

u4e−8A+4φ∂w(4A − φ) + (∂u − Au∂w)(u4Au) = 0

−u4e−4A+3φ∂we−4A+φ + (∂u − Au∂w)(u4Au) = 0. (B.82)

The last equation can be simplified even further if we use (u, v, F ) rather than (u, v,w) as

a set of independent variables. This set of variables turns out to be useful for analyzing

the regularity of the solution, so we give the map here. First, it is convenient to introduce

a new function H:

e2H ≡ e4A−3φ = ∂wF. (B.83)

Then we can relate various derivatives:

∂u|F,v = ∂u|w,v − Au∂w|u,v, ∂w|u,v = e2H∂F |u,v, ∂v|F,u = ∂v|w,u +
∂vw

∂F w
∂F |v,u.

Going back to the equation (B.82), we can rewrite it in terms of (u, v, F ) coordinates:

−u4∂F e−2H−2φ + ∂u(−u4∂uw)|v,F = 0, (B.84)

and one more derivative eliminates w from this equation:

u4∂2
F e−2H−2φ + ∂u(u4∂ue−2H) = 0. (B.85)

At this point we have solved all equations for the Killing spinors. We showed that the

solution is completely parameterized by two functions F , eφ and we found two equa-

tions (B.72), (B.82) which relate them. Unfortunately these two equations are not suffi-

cient for finding the complete solution, and they should be supplemented by an equation of

motion for the Kalb-Ramond field. We will analyze that equation in the next subsection.

– 57 –



J
H
E
P
0
9
(
2
0
0
7
)
0
9
3

B.5 Equation of motion for Bµν

As mentioned in section 3, even to construct a geometry describing a fundamental string,

one needs to supplement the equations for Killing spinors by the equation for the NS-NS

B field. In the present context, this equation becomes

d ∗ (e−φH3) = −4F5 ∧ F3. (B.86)

Substituting the information which has been accumulated so far, we arrive at the relation

d
[

e−φv2u4e−3H/2e−9φ/4(∗3d
[

e2φ(dF +e2H∂vwdv)
]]

= abc d(u4Au) ∧ d(v2∂vF ). (B.87)

Here the Hodge dual is taken with respect to a three-dimensional metric:

ds2
3 = eH−φ/2dv2 + e−H−φ/2du2 + e−H+3φ/2(dF + e2H∂vwdv)2. (B.88)

It appears that we need only u, v component of the equation (B.87). We begin with

simplifying the left hand side:

d
[

v2u4e−3H/2e−13φ/4(∗3d
[

e2φ(dF + e2H∂vwdv)
]]

uv

= d
[

v2u4e−He−4φ ∗2 de2φ
]

uv
− d

[

v2u4e−2He−4φ∂F e2φe2H∂vwdu
]

uv

−d
[

v2u4e−3H/2e−5φ/4∂F (e2H∂vw)eH/2−3φ/4 ∗2 dv
]

uv

+d
[

v2u4e−3H/2e−5φ/4∂u(e2H∂vw)(∗3d [dudv])
]

uv

= d
[

v2u4e−He−4φ ∗2 de2φ
]

uv
+ ∂v

[

v2u4e−2He−2φ∂F (e2H∂vw)
]

+∂u

[

v2u4∂u(e2H∂vw)∂vw
]

− ∂v(v
2u4∂F e−2φ∂vw)

= ∂u

[

v2u4(∂ue−2φ + ∂u(e2H∂vw)∂vw)
]

− ∂v(v
2u4∂F e−2φ∂vw)

−∂v

[

v2u4e−2H(−∂ve
−2φ − e−2φ∂F (e2H∂vw))

]

= v2∂u

[

u4∂ue−2φ
]

+ ∂v

[

v2u4∂ve
−2φ−2H

]

+ ∂u

[

v2u4∂u(e2H∂vw)∂vw
]

+∂v

[

v2u4e−2H−2φ∂F e2H∂vw
]

− ∂v(v
2u4∂F e−2φ∂vw)

= v2∂u

[

u4∂ue−2φ
]

+ ∂v

[

v2u4∂ve
−2φ−2H

]

+ ∂u

[

v2u4∂u(e2H∂vw)∂vw
]

+∂v

[

v2u4e2H∆uw∂vw
]

. (B.89)

We used the duality convention ∗
2du = −eHdv as well as relation

d
[

v2u4e−3H/2e−13φ/4(∗3

[

∂F e2φdF ∧ (dF + e2H∂vwdv)
]]

uv

= −d
[

v2u4e−2He−4φ∂F e2φe2H∂vwdu
]

uv

= −∂v(v
2u4∂F e−2φ∂vw).
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The right hand side of (B.87) can also be simplified (we use (B.39) to eliminate abc):

abc[d(−u4∂uw) ∧ d(−v2e2H∂vw)]uv

= −u4v2[∆uw∆̃vw − ∂u∂vw∂u(e2H∂vw)]

= −
{

∂u

[

v2u4∂uw∆̃vw
]

− ∂v

[

v2u4∂uw∂u(e2H∂vw)
]

}

= −
{

∂v

[

v2u4e2H∆uw∂vw
]

− ∂u

[

v2u4∂u∂vwe2H∂vw
]}

= −
{

−∂v

[

v2u4e2H∂F (e−2φ∂F w)∂vw
]

− ∂u

[

v2u4∂u∂vwe2H∂vw
]

}

.

This leads to the final form of (B.87):

0 = v2∂u

[

u4∂ue−2φ
]

+ ∂v

[

v2u4∂ve
−2φ−2H

]

+ ∂u

[

v2u4∂u(e2H∂vw)∂vw
]

+∂v

[

v2u4e2H∆uw∂vw
]

−
{

∂v

[

v2u4e2H∆uw∂vw
]

− ∂u

[

v2u4∂u∂vwe2H∂vw
]}

= v2∂u

[

u4∂ue−2φ
]

+ ∂v

[

v2u4∂ve
−2φ−2H

]

+ u4v4∆u(e2H∂vw∂vw). (B.90)

Notice that while this equation does not follow from the relations which we have extracted

from Killing spinor, it is consistent with those relations. For example, acting on (B.90) by

∂F and using the relation

v2∂u

[

u4∂u(e−2H∆̃vw − ∂vw∂F (e2H∂vw))
]

− ∂v

[

v2u4∂v∆uw
]

= v2∂uu4∂u

[

−e2H∂F ∂vw∂ve
2H − ∂vw∂F (e2H∂vw)

]

= −u4v2∂F ∆u(e2H∂vw∂vw),

we arrive at an identity.

As already mentioned, it is only (u, v) component of (B.87) which gives a new relation.

For example, looking at (v, F ) component of that equation and evaluating lhs and rhs, we

find:

d
[

v2u4e−3H/2e−13φ/4(∗3d
[

e2φ(dF + e2H∂vwdv)
]]

vF
= 2u4

[

∂u∂[vw∂F ](e
2Hv2∂vw)

]

abc[d(−u4∂uw) ∧ d(−v2e2H∂vw)]vF = 2[∂[v(u
4∂uw)∂F ](v

2e2H∂vw)],

so the (v, F ) component of (B.87) becomes an identity. The (u, F ) component works in

the same way.

B.6 Summary of the solution

In this appendix we have looked at solutions of type IIB supergravity with SO(3)× SO(5)

rotational symmetry. We solved the equations for the Killing spinors and found the fol-

lowing expressions for the metric and fluxes:

ds2 = eH
[

−e3φ/2dt2+e−φ/2(dv2+v2dΩ2
2)

]

+e−H−φ/2(du2+u2dΩ2
4)+e3H+3φ/2(dw+A)2

A = Audu =
∂uF

∂wF
, e2H = ∂wF, F5 = −a

4
d(u4Au) ∧ dΩ4 + dual,

H3 = −c d
[

e2H+2φ(dw + A)
]

dt, F3 = d(bv2∂vF ) ∧ dΩ2. (B.91)
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The geometries are parameterized by two functions F , eφ and these two functions obey

differential equations:

∂we−2φ + ∆vF = 0, (B.92)

u4e−2H∂we−2H−2φ − (∂u − Au∂w)(u4Au) = 0. (B.93)

The last equation can also be rewritten in terms of the coordinates (u, v, F ):

u4∂F e−2H−2φ + ∂u(u4∂uw)|v,F = 0. (B.94)

It turns out that the equations for the Killing spinors are not sufficient to determine F and

dilaton completely and we also had to look at the equations of motion for the Kalb-Ramond

two-form. This supplied an extra equation (B.90):

v2∂u

[

u4∂ue−2φ
]

+ ∂v

[

v2u4∂ve
−2φ−2H

]

+ u4v4∆u(e2H∂vw∂vw) = 0. (B.95)

The Killing spinor ǫ satisfies five independent projections (B.37) and chirality condition

translates into the relation (B.39).

Suppose we started with solutions which has a = −1. The flipping the orientation

of S4 and reversing the direction of time (this procedure keeps the relation Γ11ǫ = −ǫ

untouched), we arrive at the solution with a = 1. Similarly, starting with b = −1, we

can recover solution with b = 1 by reversing orientation of S2 and t. Thus without loss of

generality, we can set

a = b = 1, c = −1. (B.96)

These conventions are used in the main part of the paper.

C. Generalization: geometries without S
2

In the appendix B we derived supersymmetric solutions of type IIB supergravity assuming

U(1)×SO(3)×SO(5) symmetry. Once that solution is constructed, it is fairly easy to make

a guess and generalize it to the case without non-abelian isometries. Of course, in this case

we do not claim to construct the most general solution, but rather we use analogy to make

a guess and then check that the geometry indeed preserved 1/4 of supersymmetries. In this

section we outline this procedure for the solutions which have SO(5)×U(1) isometries, and

the more general case works in the same way. Notice that keeping SO(5) seems natural if

we want to consider a superposition of D3 spikes, since in this case the branes are located

at x5 = x6 = x7 = x8 = x9 = 0. More general solutions without SO(5) are discussed in

section 4 and they could correspond to either separate stacks of D3 branes or to spikes on

D5 branes.

C.1 Analysis of the projectors

Motivated by the solutions with SO(3) × SO(5) × U(1) symmetry, we require the metric

and the fluxes to take the form:

ds2 = eH
[

−e3φ/2dt2 + e−φ/2dx2
3

]

+ e−H−φ/2
[

(du2 + u2dΩ2
4) + e2φ+4H(dw + Audu)2

]
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H3 = − c

2
d

[

e2φ+2H(dw + Audu)
]

dt, F5 = −a

4
d(u4Au) ∧ dΩ4 + dual,

e2H = ∂wF, Au =
∂uF

∂wF
, f3 = −a

4
u4Au. (C.1)

The flux F3 is still undetermined. To check this guess and to find F3, we go back to the

original set of equations for the Killing spinor:35

1

2
6 ∂φǫ∗ − (G+ + G−)ǫ = 0,

1

2
6 ∂φǫ − (G+ − G−)ǫ∗ = 0,

6 ∂Aǫ − ie−4C 6 ∂f3ΓΩǫ +
1

2
(−3G+ + G−)ǫ∗ = 0,

(−ie−CPΩ + 6 ∂C)ǫ + ie−4C 6 ∂f3ΓΩǫ +
1

2
(G+ + G−)ǫ∗ = 0, (C.2)

∇µǫ + i
e−4C

2
6 ∂f3γµΓΩǫ +

1

96
(γµ 6 G − 2{6 G, γµ})ǫ∗ = 0.

As before, we find one geometric projector:

[

−ie−CPΩ + 6 ∂
(

A + C − φ

2

)]

ǫ = 0, (C.3)

which is consistent with ansatz provided that

[−iPΩ + Γu] ǫ = 0. (C.4)

This is one of the projectors (B.37) which easily generalizes to the present setup. Three

other independent projectors can be generalized as well:

ΓuΓwΓΩǫ = iaǫ, −iΓwΓ123ǫ
∗ = bǫ, Γ11ǫ = −ǫ. (C.5)

Notice that in (B.37) we also had a projector containing PS and it is lost in the present

setup since we do not assume an existence of S2. Similarly, had we not assumed the SO(5)

symmetry, the projector (C.4) would disappear and the first relation in (C.5) would become

−ΓwΓ45678ǫ = iaǫ. This would lead to complex 32-component spinor restricted by three

projectors, i.e. as expected, we would preserve 1/4 of SUSY.

Let us now go back to the solutions with SO(5) symmetry. They are also 1/4-

supersymmetric due to the projections (C.4), (C.5). It is useful to take a combination

of (C.5) to produce another projector

ΓwΓtǫ
∗ = cǫ, c = −ab. (C.6)

We already checked one linear combination of the projectors appearing in (C.2) and now

we look at a different combination which does not contain G+:

6 ∂(A − 3

4
φ)ǫ − ie−4C 6 ∂f3ΓΩǫ − G−ǫ∗ = 0. (C.7)

35To connect with discussion in the appendix B, we defined the warp factors e2A = eH+3φ/2 and e2C =

u2e−H−φ/2.

– 61 –



J
H
E
P
0
9
(
2
0
0
7
)
0
9
3

Acting on this relation by (1 − iΓuPΩ), we find

2Γu

[

∂u

(

A − 3

4
φ

)

+ ae−4C∂wf3

]

ǫ − 2ie−4CΓi∂if3ΓΩǫ − (1 − iΓuPΩ)G−ǫ∗ = 0. (C.8)

Notice that our ansatz implies that the expression is square brackets vanishes:

∂u(A − 3

4
φ) + ae−4C∂wf3 =

1

2
eH/2+φ/4(∂u − Au∂w)H + au−4eH/2+φ/4∂wf3

=
eφ/4−3H/2

4

[

(∂u − Au∂w)e2H − e2H∂wAu

]

=
eφ/4−3H/2

4

[

∂ue2H − ∂w∂uF
]

= 0,

then equation (C.8) can be simplified further:

− ae−4CΓuwΓi∂if3ǫ − (G−)uΓuǫ∗ = 0

−ae−4CΓi∂if3ǫ − bi(G−)uΓ123ǫ = 0. (C.9)

Acting on this relation by the (ΓuΓwΓΩ − ia), we derive a restriction on G−:

(G−)iwuΓiΓ123ǫ = 0 : (G−)iwu = 0. (C.10)

This implies that one can choose a gauge

G− =
i

2
eφ/2d

[

ǫijkhkdxij
]

, (C.11)

and various components of G− become

(6 G−)u = 3ie−H/2+5φ/4ǫijk(∂u − Au∂w)hkΓ
ij , (G−)123 = ie5φ/4−3H/2∂ihi. (C.12)

Plugging this into the equation (C.9), we find and equation for hi:

[

au−4e2H∂if3 + 6b(∂u − Au∂w)hi

]

Γiǫ = 0 : 6b(∂u − Au∂w)hi =
1

4
e2H∂iAu. (C.13)

Let us now look at the remaining piece in (C.7):

(1 + iΓuPΩ)

[

6 ∂(A − 3

4
φ)ǫ − ie−4C 6 ∂f3ΓΩǫ − G−ǫ∗

]

= 0. (C.14)

Multiplying this by (1 − iaΓuwΓΩ) and making simplifications, we find
[

Γx∂x(A − 3

4
φ)ǫ − (G−)wΓwǫ∗

]

= 0 (C.15)

[

1

2
Γx∂xH − ib(G−)wΓ123

]

ǫ = 0

[

1

2
e−H/2+φ/4Γi∂iH+3beH/2−φ/4−2He−H+φ/2ǫijk∂whkΓ

ijΓ123

]

ǫ = 0

[

1

2
e2HΓi∂iH − 6b∂whkΓk

]

ǫ = 0 : 24b∂whk = ∂ke
2H .
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To summarize, at this point we have two equations for hi:

24b∂whk = ∂ke
2H , 24b(∂u − Au∂w)hi = e2H∂iAu, (C.16)

and they can be combined to produce a relation for ∂uhi:

24b∂uhi = ∂i(e
2HAu) = ∂i∂uF. (C.17)

In this form the equations for hi can be easily integrated and we find a solution up to

x-dependent functions:

24bhi = ∂iF + 24bh̃i(x).

Notice that due to the definition (C.11) the functions h̃i(x) appear in the flux only through

g̃ = ∂ih̃i. Suppose that g̃ 6= 0, then making a shift F → F − 24b∆−1
x g̃ we absorb g̃ in F , so

without loss of generality we can set g̃ = 0 and h̃i = 0:

24bhi = ∂iF. (C.18)

We have analyzed various projections of the equation (C.7) to derive (C.11) and (C.18),

now we use these relations to simplify (C.7):

[

Γw∂w(A − 3

4
φ)ǫ − iu−4e2H+φΓu∂uf3ΓΩǫ − 6(G−)123Γ123ǫ

∗

]

= 0

[

1

2
e−3φ/4−3H/2Γw∂wHǫ − iu−4e5H/2+5φ/4Γu(∂u − Au∂w)f3ΓΩǫ − 6ib(G−)123Γwǫ

]

= 0

[

1

2
∂wH − au−4e4H+2φ(∂u − Au∂w)f3 + 6be2φ∂ihi

]

= 0.

Here we used the projector ΓΩǫ = −iaΓuΓwǫ as well as the expression (C.12) for (G−)123.

Writing hi in terms of F and f3 in terms of Au, we arrive at the equation

2∂wH + u−4e4H+2φ(∂u − Au∂w)(u4Au) + e2φ∂i∂iF = 0, (C.19)

which is equivalent to (C.7).

At this point we have confirmed two out of three projectors appearing in (C.2) and

now we look at the dilatino projector:

1

2
6 ∂φǫ +

1

4
e−φ/2−A 6 ω2Γtǫ

∗ + G−ǫ∗ = 0. (C.20)

Acting by various projectors, we find:

(1 − iΓuPΩ)(1 − iaΓuwΓΩ) : e−φ/2−AΓukωukΓtǫ
∗ + 2(G−)uΓuǫ∗ = 0,

(1 − iΓuPΩ)(1 + iaΓuwΓΩ) : Γu∂uφǫ + e−φ/2−AΓuwωuwΓtǫ
∗ = 0,

(1 + iΓuPΩ)(1 − iaΓuwΓΩ) : Γk∂kφǫ + e−φ/2−AΓkwωkwΓtǫ
∗ + 2(G−)wΓwǫ∗ = 0,

(1 + iΓuPΩ)(1 + iaΓuwΓΩ) : Γw∂wφǫ + 12(G−)123Γ123ǫ
∗ = 0.
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Although we already have a reasonable guess for ω (which we have not used so far!), it

might be useful to relax it by setting

H3 = 2ω ∧ dt (C.21)

and to derive the expression appearing in (C.1).

Using relation ǫ∗ = ibΓwΓ123ǫ, we eliminate ǫ∗ from projectors:

[

−e−5φ/4−H/2ΓkωukΓt + 2(G−)u

]

ǫ = 0, (C.22)
[

∂uφǫ − ibe−5φ/4−H/2ωuwΓtΓ123

]

ǫ = 0, (C.23)
[

−ibΓ321Γ
k∂kφǫ + e−5φ/4−H/2ΓkωkwΓt + 2(G−)w

]

ǫ = 0, (C.24)

[∂wφ + 12ib(G−)123] ǫ = 0. (C.25)

Substituting the value of (G−)123 from (C.12), we can simplify the last equation:

12b∂ihi = e−2φ∂wφ. (C.26)

Recalling the projection ΓtΓ123ǫ = ibcǫ, we rewrite the equation (C.23) as an expression

for ωuw:

ωuw = −ce2φ+2H(∂u − Au∂w)φ. (C.27)

The same projection can be used to eliminate Γt from (C.22) and (C.24). To analyze these

two equations we use the expression (C.11) to evaluate

(G−)uΓ123 = −6ie−H/2+5φ/4(∂u − Au∂w)hkΓ
k, (G−)wΓ123 = −6ie−5H/2+φ/4∂whkΓ

k.

Simplifications in the equation (C.24) give

[

c∂kφǫ + e−5φ/4−H/2ωkw + 12bce−5H/2+φ/4∂whk

]

Γkǫ = 0

c∂kφ + e−2φ−2Hωkw + 12bce−2H∂whk = 0 (C.28)

ωkw = − c

2
∂ke

2H+2φ.

To arrive at the second equation one should notice that AkΓkǫ = 0 implies Ak = 0 if all

Ak are real.

Finally we simplify equation (C.22):

[

−e−5φ/4−H/2ωuk + 12bce−H/2+5φ/4(∂u − Au∂w)hk

]

Γkǫ = 0

−e−2φ(ωuk − Auωwk) + 12bc(∂u − Au∂w)hk = 0

−e−2φωuk + 12bc∂uhk + cAue2H∂kφ = 0

ωuk =
c

2
∂k(e

2φ∂uF ). (C.29)
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Notice that equations (C.27)–(C.29) imply that

ω = − c

2
d(e2φ+2Hdw + e2φ∂uFdu) + ω̃, (C.30)

where two-form ω̃ can only have legs in the directions xi and it has no u– or w-dependence

(from now on we will assume that such contribution is absent). This clearly repro-

duces (C.28) and (C.29), to check (C.27) we compute

[

− c

2
d(e2φ+2Hdw + e2φ∂uFdu)

]

uw
= − c

2

{

∂u(e2φ∂wF ) − ∂w(e2φ∂uF )
}

= −ce2φ (∂wF∂u − ∂uF∂w)φ

= −ce2φ+2H (∂u − Au∂w)φ. (C.31)

This confirms the expression for ω which can also be rewritten as

ω = − c

2
d(e2φ∂wFdw + e2φ∂uFdu). (C.32)

To summarize, we analyzed the projectors appearing in (C.2) and showed that they

reduce to (C.11), (C.18), (C.19), (C.26), (C.32). Three of these relations give expressions for

the fluxes, while (C.19) and (C.26) lead to differential equations which should be satisfied

by F and eφ:

∂i∂iF = −∂we−2φ, (C.33)

u4e−2H∂we−2H−2φ − (∂u − Au∂w)(u4Au) = 0. (C.34)

These relations are obvious generalizations of (3.6), (3.7).

Thus we see that the gravitino and dilatino projectors confirm the ansatz (C.1), more-

over they lead to the unique expression for the F3:

G− =
ib

48
eφ/2d

[

ǫijk∂kFdxij
]

(C.35)

and to differential equations (C.33), (C.34). In the next subsection we check that the

differential equations for ǫ are also consistent with this solution.

C.2 Checking differential equations

Let us check the x, u and w components of the gravitino equation. Starting with the

general expression for the spin-connection

ωµ =
[

eνA(∂µeB
ν − ∂νeB

µ ) − eρAeσBeC
µ ∂ρeσC

]

ΓAB , (C.36)

we compute its component along xk:

ωk = (eνu∂ke
w
ν − eνw∂ke

u
ν )Γuw − 1

2
γν

k∂ν

(

H − φ

2

)

− 1

2
eρAeB

k ∂ρ

(

H − φ

2

)

ΓAB

= e2H+φ∂kAuΓuw − γν
k∂ν

(

H − φ

2

)

. (C.37)
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Then the k projection of the spinor equation becomes

[

∂k +
1

4
e2H+φ∂k(e

−2H∂uF )Γuw

]

ǫ − 1

4
γν

k∂ν

(

H − φ

2

)

ǫ + i
e−4C

2
6 ∂f3γkΓΩǫ (C.38)

+
1

96
(γk 6 G − 2{6 G, γk})ǫ∗ = 0.

Projector (C.7) and equation for the dilatino can be used to compute

1

24
6 Gǫ∗ = (G+ + G−)ǫ∗ =

1

2
6 ∂φǫ + 2G−ǫ∗ = 6 ∂(2A − φ)ǫ − 2ie−4C 6 ∂f3ΓΩǫ. (C.39)

This leads to simplification in the differential equation:
[

∂k+
1

4
e2H+φ∂k(e

−2H∂uF )Γuw+
1

4
∂k

(

H +
φ

2

)]

ǫ− 1

2
γν

k∂νHǫ+ie−4Cγν
k∂νf3ΓΩǫ (C.40)

−1

8
γµνGµνkǫ

∗ = 0.

It is convenient to decompose a three-form G as

G = G(+) + G(−) : G(+) = e−φ/2H3, G(−) = ieφ/2F3, (C.41)

and evaluate the contributions of G(+) and G(−) separately:

1

2
G

(+)
µνkdxµν = −ce−φ/2∂k

[

e2φ+2H(dw + Audu)
]

∧ dt :

G
(+)
µνkγµν = −2ce−φ/2∂ke

2φ+2He−2H−3φ/2ΓwΓt − 2ce2H+φ∂kAuΓuΓt

= −2ce2H+2φ
[

∂ke
−2φ−2H − e−φ∂kAuΓuw

]

ΓwΓt,

G(−) = 24
i

2
eφ/2ǫijk∂µhkdxµdxij = 24ieφ/2

[

∂ihidx123 +
ǫijk

2
∂σhkdyσdxij

]

:

G
(−)
µνkγµν = 24ieφ/2

[

2e−H+φ/2∂ihiΓ123Γk − 2ǫijk∂σhjγ
σe−H/2+φ/4Γi

]

= bieφ/2
[

2e−H+φ/2∂i∂iFΓ123Γk − 2ǫijk∂σ∂jFγσe−H/2+φ/4Γi

]

.

In the last two equations index σ goes over coordinates u and w. Substituting these results

into (C.40) and using projectors (C.5), (C.6), we find

[

∂k − 1

4
∂k

(

H +
3φ

2

)]

ǫ − 1

2
γν

k∂νHǫ + ie−4Cγν
k∂νf3ΓΩǫ

− ib

4
eφ/2

[

e−H+φ/2∆xFΓk(ibΓw)ǫ − ǫijk∂σ∂jFγσe−H/2+φ/4Γiǫ
∗
]

= 0.

To eliminate ǫ∗ we use the relation

ǫijkΓiǫ
∗ = ibǫijkΓiΓwΓ123ǫ = −ibΓwΓjkǫ, (C.42)

and we also recall that

ie−4Cγν
k∂νf3ΓΩǫ = −1

4
e2H+φu−4γν

k∂ν(u
4Au)Γuwǫ. (C.43)

– 66 –



J
H
E
P
0
9
(
2
0
0
7
)
0
9
3

Using this information, one can rewrite the differential equation as

[

∂k − 1

4
∂k

(

H +
3φ

2

)]

ǫ − 1

2
γν

k∂νHǫ − 1

4
e2H+φu−4γν

k∂ν(u
4Au)Γuwǫ

+
1

4
eφ/2

[

−e−H+φ/2∂we−2φΓkΓw + ∂σ∂jFγσe−H/2+φ/4ΓwΓjk

]

ǫ = 0. (C.44)

It is convenient to do a separate analysis of different terms appearing in this equation. We

begin with contributions proportional to Γjk:

−1

2
∂jHǫ − 1

4
e2H+φu−4∂j(u

4Au)Γuwǫ

+
1

4
eφ/2

[

(ΓueH/2+φ/4(∂u − Au∂w) + Γwe−3H/2−3φ/4∂w)∂jF
]

e−H/2+φ/4Γwǫ

=

(

− 1

2
∂jH +

1

4
e−2H∂j∂wF

)

ǫ − 1

4

[

e2H+φu−4∂j(u
4Au) − eφ(∂u − Au∂w)∂jF

]

Γuwǫ

=
1

4
e−2H(−∂je

2H + ∂j∂wF )ǫ − 1

4

[

e2H+φ∂j(u
4Aue2H) − eφ∂u∂jF

]

Γuwǫ.

Both terms in the right hand side vanish due to the definitions (C.1). Now we collect the

remaining contributions to (C.44) which contain Γk:

[

1

2
γσ∂σH +

e2H+φ

4u4
γσ∂σ(u4Au)Γuw

]

ǫ − 1

4
e−H+φ∂we−2φΓwǫ

=
1

4
Γu

[

2eH/2+φ/4(∂u − Au∂w)H − e2H+φe−3H/2−3φ/4∂wAu

]

ǫ

+
1

4
Γw

[

2e−3H/2−3φ/4∂wH +
e2H+φ

u4
eH/2+φ/4(∂u − Au∂w)(u4Au) − e−H+φ∂we−2φ

]

ǫ

=
e−3H/2+φ/4

4
Γu

[

∂ue2H − ∂w(Aue2H)
]

ǫ

+
e−3H/2−3φ/4

4
Γw

[

2∂wH +
e4H+2φ

u4
(∂u − Au∂w)(uAu) + e2φ∂i∂iF

]

ǫ.

The right hand side of this expression vanishes due to (C.1) and (C.19). We conclude that

equation (C.44) reduces to

[

∂k − 1

4
∂k

(

H +
3φ

2

)]

ǫ = 0, (C.45)

which implies that

ǫ = exp

[

1

4

(

H +
3φ

2

)]

ǫ0(u,w). (C.46)

Next we check w components of the differential equation:

∇wǫ + i
e−4C

2
6 ∂f3γwΓΩǫ +

1

96
(γw 6 G − 2{6 G, γw})ǫ∗ = 0

∇wǫ + iu−4e2H+φγν
w∂νf3ΓΩǫ +

1

4
γw 6 ∂(2A − φ)ǫ − 1

8
γµνGµνwǫ∗ = 0. (C.47)
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The spin connection along w direction is

ωw = e2H+φ∂wAuΓuw − 1

4

[

6 ∂
(

3H +
3φ

2

)

, γw

]

− e3H/2+3φ/4γµν∂µew
ν . (C.48)

We also need the expression for γµνGµνwǫ∗:

1

2
G(+)

µνwdxµν = −ce−φ/2∂w

[

e2φ+2H(dw + Audu)
]

∧ dt + ce−φ/2∂µ

[

e2φ+2H
]

dxµ ∧ dt :

G
(+)
µνkγµν = −2c

[

e−2H−2φ∂we2φ+2HΓw + e2H+φ∂wAuΓu − e−H/2−5φ/4 6 ∂e2φ+2H
]

Γt

= −2ce2H+2φ
[

∂we−2φ−2H − e−φ∂wAuΓuw

]

ΓwΓt − 2ce−H/2−5φ/4 6 ∂e2φ+2HΓt,

G(−) = 12ieφ/2ǫijk∂µhkdxµdxij :

G(−)
µνwγµν = 24ieφ/2ǫijke

−H+φ/2∂whkΓij = 48ie−H+φ∂whkΓkΓ123,

1

8
γµνGµνwǫ∗ = −1

4
e2H+2φ

[

∂we−2φ−2H − e−φ∂wAuΓuw

]

ǫ

−1

4
e−H/2−5φ/4 6 ∂e2φ+2HΓwǫ − 6be−H+φ∂whkΓkΓwǫ. (C.49)

Substitution of these expressions into (C.47) gives a complicated equation. We begin with

analyzing the coefficient in front of Γk:

[

−3

4

eφ+H

2
∂k

(

H+
φ

2

)

Γw−
1

4
eH+φγν∂ke

w
ν +ie3H+2φΓw∂k

f3

u4
ΓΩ−

eφ+H

4
Γw∂k

(

H+
φ

2

)]

ǫ

+
1

4
e−H−φ∂ke

2φ+2HΓwǫ +
1

4
e−H+φ∂w∂kFΓwǫ (C.50)

= eφ+H

[(

−3

8
− 3

8
− 1

4

)

∂k

(

H +
φ

2

)

+
1

2
∂k(φ + H) +

1

2
∂kH

]

Γwǫ

+

[

−1

4
eH+φγue3H/2+3φ/4∂kAu − e3H+2φ∂k

(

−Au

4

)

Γu

]

ǫ.

One can see that the right hand side is zero, so equation (C.47) does not contain terms

with Γk. Next we look at the contributions proportional to Γuwǫ:

1

4

[

e2H+φ∂wAu − 1

2
ǫσ

w∂σ

(

3H +
3φ

2

)

− e3H/2+3φ/4ǫστ∂σew
τ

]

Γuwǫ (C.51)

−1

4
ǫσ

w∂σ

(

H +
φ

2

)

Γuwǫ +
1

4

[

−e2H+φ∂wAu + e−2H−2φǫσ
w∂σe2φ+2H

]

Γuwǫ

=
1

4

[

1

2
ǫσ

w∂σ

(

− H +
3φ

2

)

− e3H/2+3φ/4ǫστ∂σew
τ

]

Γuwǫ.

Using relations

e3H/2+3φ/4ǫστ∂σew
τ =

3

2
ǫσ

w∂σ

(

H +
φ

2

)

+ e3H+3φ/2ǫσu∂σAu,

e3H+3φ/2ǫσu∂σAu = −e2H+φ∂wAu,

ǫσ
w∂σH = ew

w eσ
u∂σH
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= e2H+φ(∂u − Au∂w)H

=
eφ

2

[

∂u∂wF − ∂w(e2HAu) + e2H∂wAu

]

=
1

2
e2H+φ∂wAu,

we conclude that the right hand side of (C.51) vanishes.

Thus the left hand side of the equation (C.47) reduces to expression which does not

contain gamma matrices:
[

∂w − au−4e2H+φǫσ
w∂σf3 +

1

4
∂w

(

H +
φ

2

)

− 1 − 1

2
∂w(φ + H)

]

ǫ

=

[

∂w +
e4H+2φ

4u4
(∂u − Au∂w)(u4Au) +

1

4
∂w

(

H +
φ

2

)]

ǫ

=

[

∂w − 1

2
∂w(H + φ) +

1

4
∂w

(

H +
φ

2

)]

ǫ

= eH/4+3φ/8∂we−H/4−3φ/8ǫ, (C.52)

and it vanishes if ǫ0 in (C.46) does not depend on w. This completes the check of the

equation (C.47).

At this point we have shown that the geometry (C.1) satisfies all equations for the

Killing spinor, except the u projection of the gravitino equation. Rather that checking this

last relation explicitly, we multiply the differential equation appearing in (C.2) by γµ and

sum over six indices corresponding to (t, u, w, xi):
36

γµ∇µǫ − 5iu−4e2H+φ 6 ∂f3ΓΩǫ +
6

4
6 ∂(2A − φ)ǫ − 1

8
γµγαβGαβµǫ∗ = 0. (C.53)

Notice that this relation is equivalent to the u component of the gravitino equation since

all other components were already shown to vanish. Let us simplify the left hand side of

the last equation:

S ≡
[

γµ∇µ−5iu−4e2H+φ 6 ∂f3ΓΩ+
3

2
6 ∂

(

H+
φ

2

)]

ǫ − 3

[

6 ∂
(

H+
φ

2

)

−2iu−4e2H+φ 6 ∂f3ΓΩ

]

ǫ

= γµ∇µǫ − 1

4
u−4e2H+φ 6 ∂(u4Au)Γuwǫ − 3

2
6 ∂

(

H +
φ

2

)

ǫ. (C.54)

We have used first projector in (C.5) as well as expression for f3 from (C.1). To proceed

we evaluate

γµωµ = eνA 6 ∂eB
ν ΓAB + ∂νγ

µγν
µ − ∂ργσγρσ = e2H+φ 6 ∂AuΓuw + ∂νg

µσγσγν
µ,

∂νgµσγσγν
µ =

1

2
∂νg

µσ(γσγνγµ − gσµγν) = γµ∂νg
µν − 6 ∂gµσgσµ. (C.55)

Substituting this into the right hand side of (C.54), we find

S = 6 ∂ǫ +
1

4
(γµ∂νg

µν − 6 ∂gµσgσµ)ǫ − e2H+φ

u
AuγuΓuwǫ − 3

2
6 ∂

(

H +
φ

2

)

ǫ

36We also used (C.39) to eliminate 1
96

γµγµ 6 Gǫ∗.
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= 6 ∂ǫ +
1

4
γµǫ ∂νgµν +

1

4
6 ∂(6H + φ)ǫ − e5(H+φ/2)/2

u
AuΓwǫ − 3

2
6 ∂

(

H +
φ

2

)

ǫ

= eH/4+3φ/8 6 ∂(e−H/4−3φ/8ǫ) +
e−H+φ/2

4
γµǫ ∂ν(eH−φ/2gµν) − e5(H+φ/2)/2

u
AuΓwǫ.

The first term in the right hand side vanishes due to relation (C.46) and the fact that ǫ0

is a constant spinor. Recalling the relevant six-dimensional metric

ds2
6 = eH−φ/2

[

−e2φdt2 + dx2
3 + e−2Hdu2 + e2φ+2H(dw + Audu)2

]

≡ eH−φ/2g̃µνdxµdxν ,

we can simplify S even further:

S =
e−H/2+φ/4

4
γ̃µǫ ∂ν(g̃

µν) − e5(H+φ/2)/2

u
AuΓwǫ

=
e−H/2+φ/4

4

[

γ̃uǫ {−∂w(Aue2H) + ∂ue2H} − 4

u
e3H+φAuΓwǫ

+γ̃wǫ {∂w(e−2H−2φ + A2
ue2H) − ∂u(Aue2H)}

]

=
e−H/2+φ/4

4

[

(e−HΓu + eφ+HAuΓw)ǫ {−∂w(Aue2H) + ∂ue2H}

+eφ+HΓwǫ

{

∂w(e−2H−2φ+A2
ue2H)−∂u(Aue2H)− 4

u
e2HAu

}]

.

Expressing the terms proportional to Γuǫ in terms of F (see (C.1)), we conclude that

they cancel out and one only needs to analyze the last line of the equation written above.

Substituting the expression for ∂we−2H−2φ from (C.34), we arrive at a relation

S =
eH/2+5φ/4

4
Γwǫ

[

Au∂w(Aue2H) − Au∂ue2H)
]

, (C.56)

and the right hand side is clearly equal to zero. Then we conclude that equation (C.53) is

satisfied by the system (C.1), (C.11), (C.33), (C.34).

To summarize, in this appendix we generalized the metric (3.5) to the situation without

SO(3) symmetry and we explicitly checked that all dilatino and gravitino equations are

satisfied for the resulting solution. The SO(5) symmetry can be lifted in the same way,

and introducing minor modifications to the procedure outlined in this appendix, one can

check that a more general geometry (4.1) is also supersymmetric.

D. 1/2-BPS geometries and near-horizon limit

In section 3 we constructed geometries preserving eight supercharges along with SO(5) ×
SO(3) isometries. It is natural to ask whether some special solutions can have an enhanced

supersymmetry. In the case of asymptotically-flat space the answer is well-known: to

preserve 16 supercharges, one should set two out of three field-strengths (H3, F3, F5) to

zero. The resulting solutions describe sets of parallel branes with flat worldvolumes. In

the spaces with AdS5 × S5 asymptotics the situation is different, and it is possible to find
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1/2-BPS geometries with all fluxes being turned on [11, 12, 14]. It is interesting to find

a relation between these solutions and the metrics constructed in this paper. We outline

the procedure for embedding the solutions of [12] into the ansatz (3.5) in section 3.2 and

in this appendix we provide some computational details.

In section 4.4 we showed that starting with an asymptotically-flat solution one can

construct a geometry with AdS5 × S5 asymptotics by taking a near-horizon limit (4.27).

If this limit is applied to a metric produced by a stack of flat D3 branes, one arrives at

AdS5 × S5 which preserves twice as much supersymmetry as the original solution, and it

is very natural to ask whether similar enhancement happens for a more general 1/4-BPS

state. This problem is analyzed below and we find that a D3 brane metric is the only

solution which has an enhanced symmetry in the limit (4.27).

We begin by embedding the solutions with SO(5) × SO(3) × SO(2, 1) symmetry into

a more general class of geometries described by (3.5). To do this we need to recall the

metrics found in [12]:

ds2 = yeS−φ/2dH2
2 + yeG−φ/2dΩ2

2 + ye−G−φ/2dΩ2
4 +

e−φ

2y cosh G
(dx2 + dy2). (D.1)

The warp factors entering this expressions are specified in terms of one harmonic function

and we refer to [12] for details. Here we will need only one of the equations satisfied by

the warp factors:

d(S − G − 2φ) = − 1

y cosh G
(e−Gdy + F(yeS−φ/2)−1/2dx), (D.2)

F ≡
√

ye−φ/2(eS − eG − e−G).

To find the map between coordinates (x, y, z) used in (D.1) and (u, v,w) describing (3.5),

we begin with relations (3.13):

eH = yz2eS−2φ, u2 = yeH−G = y2z2eS−G−2φ v2 = yeG−H = z−2e−S+G+2φ. (D.3)

This leaves only one undetermined coordinate w. Unfortunately we will only be able to

find an expression for its differential. Let us introduce a scalar ωz and a one-form ω which

has legs in two dimensional space spanned by x, y:

e2H(dw + A) = (∂wFdw + ∂uFdu) ≡ ωzdz + ω. (D.4)

Substituting this into (3.5) and matching the resulting metric with (D.1), we find a relation

yeS dz2

z2
+

1

2y cosh G
(dx2 + dy2) = eHdv2 + e−Hdu2 + e−H+2φ(ωzdz + ω)2. (D.5)

Extracting the coefficient in front of z−2dz2, we determine ωz:

ωz = y1/2e(S−4φ)/2+φ/4F . (D.6)

To find ω we look at the coefficient in front of dz:

−z−3eHde−S+G+2φ + e−Hzd(y2eS−G−2φ) + 2e−H+2φωzω = 0,
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then using equation (D.2) we compute

ω = −z
e−(S/2+φ/4)

√
yF

[

y2eS−2φ cosh Gd(S − G − 2φ) + yeS−G−2φdy
]

= −z
e−(S/2+φ/4)

√
yF

[

−yeS−2φF(yeS−φ/2)−1/2dx
]

= ze−2φdx. (D.7)

To summarize, we found an expression for the differential of w:

dw + Audu = e−2H
[

y1/2e(S−4φ)/2+φ/4Fdz + ze−2φdx
]

, (D.8)

and one can use this relation along with (D.3) to recover a unique set of coordinates (u, v,w)

starting from any solution with SO(5)×SO(3)×SO(2, 1) symmetry. As a consistency check,

we observe that the substitution of (D.8) into (3.5) gives an expression for the NS-NS 3-form

H3 = df(x, y) ∧ volAdS which is expected for the solutions with SO(2, 1) symmetry.

So far we started with an assumption that geometry (3.5) has a hidden SO(2, 1) sym-

metry and showed that such solutions can be matched into the construction of [12]. Un-

fortunately, a metric containing AdS2 × S2 × S4 factors cannot be asymptotically flat, so

this match is useful only for the geometries with AdS5 × S5 asymptotics. However, one

can still start from a metric produced by branes in flat space and hope that a symmetry

gets enhanced in a certain limit (for example, starting with a geometry produced by D3

brane and going close to the source, one finds AdS5 × S5), it would be interesting to see

whether a region with SO(2, 1) × SO(3)× SO(5) isometry can be recovered from a generic

asymptotically-flat solution (3.5). A natural generalization of the near-horizon limit for

this case has been proposed in section 4.4 and now we will analyze whether it is possible

to enhance the symmetry from SO(3) × SO(5) to SO(3) × SO(5) × SO(2, 1) in this limit.

We begin by recalling the ”near-horizon map” (4.27) which transforms any

asymptotically-flat solution into a geometry with AdS5 × S5 asymptotics:

u = ǫũ, eH = ǫ2eH̃ , v = ǫ−1ṽ, w = ǫ−3w̃, t = ǫ−1t̃, F = ǫF̃ . (D.9)

Let us look at various fields in the limit ǫ → 0:

eφ = f0(uv, u3w, u) → f0(ũṽ, ũ3w̃, 0) ≡ eφ̂,

eH̃ = ǫ−2u2f1(uv, u3w, u) → ũ2f1(ũṽ, ũ3w̃, 0) ≡ ũ2eĤ , (D.10)

Ãu = ǫ4u−4f2(uv, u3w, u) → ũ−4f2(ũṽ, ũ3w̃, 0) ≡ ũ−4Âu,

F̃ = ǫ−1uf3(uv, u3w, u) → ũf3(ũṽ, ũ3w̃, 0) ≡ ũF̂ .

Assuming that the translational invariance in t gets enhanced to SO(2, 1), we take the

metric of the resulting AdS space to be −z2dt2 + dz2

z2 . Then it is convenient to use z as one

of the coordinates, and we will call the two remaining coordinates x = ũṽ and y = ũ3w̃, so

that (u, v,w) are functions of (z, x, y). An assumption of the enhanced symmetry requires

the dilaton and warp factors of the spheres to be z-independent and it also imposes a

relation gtt ∼ z2. The only consistent way to satisfy these requirements is to make the

following rescalings:

ũ = zû, ṽ = z−1v̂, w̃ = z−3ŵ (D.11)
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and to assume that all variables with hats are functions of x and y only. Then we can

rewrite (D.10) in terms of ”hatted functions” which depend on x and y:

eφ = eφ̂, eH̃ = z2eĤ , Ãu = z−4Âu, F̃ = zF̂ . (D.12)

Substituting this into (3.5) we observe that z disappears from RR fluxes37 and from the

warp factors in front of S2 and S4. The remaining part of the metric and NS-NS three-form

become

ds2
4 = −eĤ+3φ̂/2z2dt̃2 + eĤ−φ̂/2z2d(z−1v̂)2 + e−Ĥ−φ̂/2z−2d(zû)2

+z−2e−Ĥ+3φ̂/2
[

d(zF̂ ) − ∂ṽ(zF̂ )d(z−1v̂)
]2

,

H3 = −1

2
d

{

e2φ̂
[

d(zF̂ ) − ∂ṽ(zF̂ )d(z−1v̂)
]}

∧ dt. (D.13)

A necessary condition for the SO(2, 1) invariance is a particular z-dependence of H3:

H3 = df̂ ∧ dz ∧ dt (D.14)

and comparison with (D.13) implies that

Ω ≡ d
{

e2φ̂
[

dF̂ − z−2∂ṽ(zF̂ )dv̂
]}

. (D.15)

should vanish. Since we are dealing with three functions (û, v̂, ŵ) which depend on two

variables (x, y), we can impose a gauge û = 1, then ∂ṽ = z∂x and we find a simpler

expression for Ω:

Ω = d
{

e2φ̂
[

dF̂ − ∂xF̂ dx
]}

= d
{

e2φ̂∂yF̂ dy
}

= ∂x(e2φ̂∂yF̂ )dx ∧ dy. (D.16)

Thus the assumption of SO(2, 1) invariance translates into the relation

∂x(e2φ̂∂yF̂ ) = 0, (D.17)

which can be reformulated as x-independence of the following function:

f ≡ e−2φ̂

∂yF̂
, ∂xf = 0. (D.18)

Let us write the equations (3.6), (3.8) in the û = 1 gauge:

∂ye
−2φ̂ + x−2∂x(x2∂xF̂ ) = 0, (D.19)

∂F̂ (e−2φ̂∂F̂ ŵ) + (F̂ ∂F̂ − x∂x)(3ŵ + (F̂ ∂F̂ − x∂x)ŵ) = 0, (D.20)

e2Ĥ = ∂yF̂ , Au =
F̂

∂yF̂
.

37For example, to see that F3 has no z dependence, we compute ṽ2∂ṽF̃ → z−2v̂2ũ2∂xF̂ = v̂2û2∂xF̂ .
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To arrive at (D.20) we used the following manipulations:

∂F |u,v = z∂F̂ ,

∂uw|v,F = ∂u

(

z−3ŵ

(

F

u
, uv

))

= −z−4(3ŵ + (F̂ ∂F̂ − x∂x)ŵ),

∂u(u4∂uw)|v,F = z−1(F̂ ∂F̂ − x∂x)(3ŵ + (F̂ ∂F̂ − x∂x)ŵ).

It is convenient to eliminate dilaton from equations (D.19), (D.20) and rewrite them in

terms of f(y), F̂ (x, y). Then we arrive at the system

∂y(f∂yF̂ ) + ∆xF̂ = 0, (D.21)

∂yf +
[

(F̂ + x∂xF̂ )∂y − x∂yF̂ ∂x

]

[

3y +
1

∂yF̂
(F̂ + x∂xF̂ )

]

= 0. (D.22)

To simplify the last equation we used the relations

F̂ ∂F̂ − x∂x|F̂ =
1

∂yF̂
(F̂ + x∂xF̂ )∂y − x∂x|y, ∂F̂ =

1

∂yF̂
∂y.

Thus we arrived at a system of two PDEs for one function of two variables F̂ (x, y) and one

function f(y). Since these differential equations are independent and f does not depend

on x, one can easily show that there are no solutions with nontrivial x-dependence.

To summarize, we started with an assumption that a near-horizon limit of an

asymptotically-flat solution (3.5) has an enhanced SO(2, 1) symmetry, this led to the re-

quirement (D.18), which in turn implied the trivial x-dependence in the solution. Of course,

there are many interesting geometries with SO(2, 1)×SO(3)×SO(5) isometries [12], however

they cannot be constructed as a near horizon limit (4.27) of solutions with flat asymptotics.

The exceptions are x-independent solutions of (D.21), (D.22)38 and now we will show that

the only such solution is AdS5 × S5.

Example: AdS5 × S5. Let us assume that function F̂ does not depend on x. Then

equation (D.21) implies that the dilaton is constant (e−2φ = f∂yF̂ ). One can proceed by

solving equation (D.22) to find F̂ (y), but it turns out that there is an alternative route

which leads to a simpler equation. Once we know that the dilaton is constant and there is no

x-dependence in the system, the equation (D.20) can be rewritten in terms of e−2Ĥ = ∂F̂ ŵ:

∂F̂ e−2Ĥ−2φ + (F̂ 2∂F̂ + 4F̂ )e−2Ĥ = 0. (D.23)

This equation can be easily solved:

e−2Ĥ =
Q

(1 + e2φF̂ 2)2
=

Qz4

(z2 + e2φF 2)2
, (D.24)

and the metric takes the standard form (for simplicity we set e2φ = 1):

ds2 = z2eĤ
[

−dt2 + dv2 + v2dΩ2
2

]

+ z−2e−Ĥ
[

du2 + u2dΩ2
4 + (dF − ∂vFdv)2

]

= z2eĤ
[

−dt2 + dv2 + v2dΩ2
2

]

+ z−2e−Ĥ
[

dz2 + z2dΩ2
4 + dF 2

]

. (D.25)

38Notice that in this case we have two ODEs for two functions of y.
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[23] R. Güven, Black p-brane solutions of D = 11 supergravity theory, Phys. Lett. B 276 (1992)

49.

[24] M. Perry and J.H. Schwarz, Interacting chiral gauge fields in six dimensions and Born-Infeld

theory, Nucl. Phys. B 489 (1997) 47 [hep-th/9611065];

M. Aganagic, J. Park, C. Popescu and J.H. Schwarz, World-volume action of the M-theory

five-brane, Nucl. Phys. B 496 (1997) 191 [hep-th/9701166].

[25] I.A. Bandos et al., On the equivalence of different formulations of the M-theory five-brane,

Phys. Lett. B 408 (1997) 135 [hep-th/9703127];

P. Pasti, D.P. Sorokin and M. Tonin, Covariant action for a D = 11 five-brane with the chiral

field, Phys. Lett. B 398 (1997) 41 [hep-th/9701037];

– 76 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB513%2C198
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB513%2C198
http://arxiv.org/abs/hep-th/9708147
http://arxiv.org/abs/hep-th/9705011
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2CR233
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2CR233
http://arxiv.org/abs/hep-th/0210157
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB492%2C152
http://arxiv.org/abs/hep-th/9611230
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB500%2C3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB500%2C3
http://arxiv.org/abs/hep-th/9703166
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB507%2C658
http://arxiv.org/abs/hep-th/9706109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB505%2C202
http://arxiv.org/abs/hep-th/9704104
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C71%2C983
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C71%2C983
http://arxiv.org/abs/hep-th/9802067
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB383%2C44
http://arxiv.org/abs/hep-th/9512059
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C58%2C163
http://arxiv.org/abs/hep-th/9609217
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB490%2C163
http://arxiv.org/abs/hep-th/9610148
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB393%2C311
http://arxiv.org/abs/hep-th/9610249
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB490%2C179
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB490%2C179
http://arxiv.org/abs/hep-th/9611159
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB490%2C145
http://arxiv.org/abs/hep-th/9611173
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD51%2C2896
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD51%2C2896
http://arxiv.org/abs/hep-th/9409021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB475%2C149
http://arxiv.org/abs/hep-th/9604035
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C14%2C2085
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C14%2C2085
http://arxiv.org/abs/hep-th/9702163
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB189%2C75
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB276%2C49
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB276%2C49
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB489%2C47
http://arxiv.org/abs/hep-th/9611065
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB496%2C191
http://arxiv.org/abs/hep-th/9701166
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB408%2C135
http://arxiv.org/abs/hep-th/9703127
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB398%2C41
http://arxiv.org/abs/hep-th/9701037


J
H
E
P
0
9
(
2
0
0
7
)
0
9
3

I.A. Bandos et al., Covariant action for the super-five-brane of M-theory, Phys. Rev. Lett. 78

(1997) 4332 [hep-th/9701149].

[26] C. Bachas, M.R. Douglas and C. Schweigert, Flux stabilization of D-branes, JHEP 05 (2000)

048 [hep-th/0003037].

[27] J.P. Gauntlett, C. Kohl, D. Mateos, P.K. Townsend and M. Zamaklar, Finite energy

Dirac-Born-Infeld monopoles and string junctions, Phys. Rev. D 60 (1999) 045004

[hep-th/9903156].

[28] E. Witten, Baryons and branes in anti de Sitter space, JHEP 07 (1998) 006

[hep-th/9805112].

[29] Y. Imamura, Supersymmetries and BPS configurations on anti-de Sitter space, Nucl. Phys. B

537 (1999) 184 [hep-th/9807179];

C.G. Callan Jr., A. Guijosa and K.G. Savvidy, Baryons and string creation from the

fivebrane worldvolume action, Nucl. Phys. B 547 (1999) 127 [hep-th/9810092];

J.M. Camino, A.V. Ramallo and J.M. Sanchez de Santos, Worldvolume dynamics of D-branes

in a D-brane background, Nucl. Phys. B 562 (1999) 103 [hep-th/9905118];

J. Gomis, A.V. Ramallo, J. Simon and P.K. Townsend, Supersymmetric baryonic branes,

JHEP 11 (1999) 019 [hep-th/9907022].

[30] M. Grana and J. Polchinski, Gauge/gravity duals with holomorphic dilaton, Phys. Rev. D 65

(2002) 126005 [hep-th/0106014].

[31] A.A. Tseytlin, Self-duality of Born-Infeld action and Dirichlet 3-brane of type-IIB superstring

theory, Nucl. Phys. B 469 (1996) 51 [hep-th/9602064].

[32] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032

[hep-th/9908142].

[33] A. Hashimoto and N. Itzhaki, Non-commutative Yang-Mills and the AdS/CFT

correspondence, Phys. Lett. B 465 (1999) 142 [hep-th/9907166].

[34] J.M. Maldacena and J.G. Russo, Large-N limit of non-commutative gauge theories, JHEP 09

(1999) 025 [hep-th/9908134].

[35] P. Kraus, F. Larsen and S.P. Trivedi, The Coulomb branch of gauge theory from rotating

branes, JHEP 03 (1999) 003 [hep-th/9811120].

[36] C.V. Johnson, D-brane primer, hep-th/0007170.

[37] J.H. Schwarz, Covariant field equations of chiral N = 2 D = 10 supergravity, Nucl. Phys. B

226 (1983) 269;

J.H. Schwarz and P.C. West, Symmetries and transformations of chiral N = 2 D = 10

supergravity, Phys. Lett. B 126 (1983) 301;

P.S. Howe and P.C. West, The complete N = 2, D = 10 supergravity, Nucl. Phys. B 238

(1984) 181.

[38] D. Marolf and A.W. Peet, Brane baldness vs. superselection sectors, Phys. Rev. D 60 (1999)

105007 [hep-th/9903213].

[39] S.A. Cherkis and A. Hashimoto, Supergravity solution of intersecting branes and AdS/CFT

with flavor, JHEP 11 (2002) 036 [hep-th/0210105].

– 77 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C78%2C4332
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C78%2C4332
http://arxiv.org/abs/hep-th/9701149
http://jhep.sissa.it/stdsearch?paper=05%282000%29048
http://jhep.sissa.it/stdsearch?paper=05%282000%29048
http://arxiv.org/abs/hep-th/0003037
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C045004
http://arxiv.org/abs/hep-th/9903156
http://jhep.sissa.it/stdsearch?paper=07%281998%29006
http://arxiv.org/abs/hep-th/9805112
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB537%2C184
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB537%2C184
http://arxiv.org/abs/hep-th/9807179
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB547%2C127
http://arxiv.org/abs/hep-th/9810092
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB562%2C103
http://arxiv.org/abs/hep-th/9905118
http://jhep.sissa.it/stdsearch?paper=11%281999%29019
http://arxiv.org/abs/hep-th/9907022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C126005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C126005
http://arxiv.org/abs/hep-th/0106014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB469%2C51
http://arxiv.org/abs/hep-th/9602064
http://jhep.sissa.it/stdsearch?paper=09%281999%29032
http://arxiv.org/abs/hep-th/9908142
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB465%2C142
http://arxiv.org/abs/hep-th/9907166
http://jhep.sissa.it/stdsearch?paper=09%281999%29025
http://jhep.sissa.it/stdsearch?paper=09%281999%29025
http://arxiv.org/abs/hep-th/9908134
http://jhep.sissa.it/stdsearch?paper=03%281999%29003
http://arxiv.org/abs/hep-th/9811120
http://arxiv.org/abs/hep-th/0007170
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB226%2C269
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB226%2C269
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB126%2C301
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB238%2C181
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB238%2C181
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C105007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C105007
http://arxiv.org/abs/hep-th/9903213
http://jhep.sissa.it/stdsearch?paper=11%282002%29036
http://arxiv.org/abs/hep-th/0210105


J
H
E
P
0
9
(
2
0
0
7
)
0
9
3

[40] O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl.

Phys. B 623 (2002) 342 [hep-th/0109154];

O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1 − D5 system with

angular momentum, hep-th/0212210.

[41] J.B. Gutowski, D. Martelli and H.S. Reall, All supersymmetric solutions of minimal

supergravity in six dimensions, Class. and Quant. Grav. 20 (2003) 5049 [hep-th/0306235].

[42] I. Bena and N.P. Warner, One ring to rule them all . . . and in the darkness bind them?, Adv.

Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106].

[43] O. Lunin, Adding momentum to D1 − D5 system, JHEP 04 (2004) 054 [hep-th/0404006];

S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates,

Nucl. Phys. B 701 (2004) 357 [hep-th/0405017]; 3-charge geometries and their CFT duals,

Nucl. Phys. B 710 (2005) 425 [hep-th/0406103];

S. Giusto and S.D. Mathur, Geometry of D1 − D5-p bound states, Nucl. Phys. B 729 (2005)

203 [hep-th/0409067];

P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and

black rings, JHEP 06 (2006) 007 [hep-th/0505167].

[44] O. Lunin, 1/2-BPS states in M theory and defects in the dual CFTs, arXiv:0704.3442.

[45] M. Grana and J. Polchinski, Supersymmetric three-form flux perturbations on AdS5, Phys.

Rev. D 63 (2001) 026001 [hep-th/0009211].

– 78 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB623%2C342
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB623%2C342
http://arxiv.org/abs/hep-th/0109154
http://arxiv.org/abs/hep-th/0212210
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C20%2C5049
http://arxiv.org/abs/hep-th/0306235
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C9%2C667
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C9%2C667
http://arxiv.org/abs/hep-th/0408106
http://jhep.sissa.it/stdsearch?paper=04%282004%29054
http://arxiv.org/abs/hep-th/0404006
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB701%2C357
http://arxiv.org/abs/hep-th/0405017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB710%2C425
http://arxiv.org/abs/hep-th/0406103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB729%2C203
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB729%2C203
http://arxiv.org/abs/hep-th/0409067
http://jhep.sissa.it/stdsearch?paper=06%282006%29007
http://arxiv.org/abs/hep-th/0505167
http://arxiv.org/abs/0704.3442
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C026001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C026001
http://arxiv.org/abs/hep-th/0009211

